-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathuart.c
210 lines (169 loc) · 6.95 KB
/
uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "hardware/address_mapped.h"
#include "hardware/platform_defs.h"
#include "hardware/uart.h"
#include "hardware/structs/uart.h"
#include "hardware/resets.h"
#include "hardware/clocks.h"
#include "hardware/timer.h"
#include "pico/assert.h"
#include "pico.h"
check_hw_layout(uart_hw_t, fr, UART_UARTFR_OFFSET);
check_hw_layout(uart_hw_t, dmacr, UART_UARTDMACR_OFFSET);
#if PICO_UART_ENABLE_CRLF_SUPPORT
short uart_char_to_line_feed[NUM_UARTS];
#endif
/// \tag::uart_reset[]
static inline void uart_reset(uart_inst_t *uart) {
invalid_params_if(UART, uart != uart0 && uart != uart1);
reset_block(uart_get_index(uart) ? RESETS_RESET_UART1_BITS : RESETS_RESET_UART0_BITS);
}
static inline void uart_unreset(uart_inst_t *uart) {
invalid_params_if(UART, uart != uart0 && uart != uart1);
unreset_block_wait(uart_get_index(uart) ? RESETS_RESET_UART1_BITS : RESETS_RESET_UART0_BITS);
}
/// \end::uart_reset[]
/// \tag::uart_init[]
uint uart_init(uart_inst_t *uart, uint baudrate) {
invalid_params_if(UART, uart != uart0 && uart != uart1);
if (clock_get_hz(clk_peri) == 0) {
return 0;
}
uart_reset(uart);
uart_unreset(uart);
#if PICO_UART_ENABLE_CRLF_SUPPORT
uart_set_translate_crlf(uart, PICO_UART_DEFAULT_CRLF);
#endif
// Any LCR writes need to take place before enabling the UART
uint baud = uart_set_baudrate(uart, baudrate);
uart_set_format(uart, 8, 1, UART_PARITY_NONE);
// Enable FIFOs (must be before setting UARTEN, as this is an LCR access)
hw_set_bits(&uart_get_hw(uart)->lcr_h, UART_UARTLCR_H_FEN_BITS);
// Enable the UART, both TX and RX
uart_get_hw(uart)->cr = UART_UARTCR_UARTEN_BITS | UART_UARTCR_TXE_BITS | UART_UARTCR_RXE_BITS;
// Always enable DREQ signals -- no harm in this if DMA is not listening
uart_get_hw(uart)->dmacr = UART_UARTDMACR_TXDMAE_BITS | UART_UARTDMACR_RXDMAE_BITS;
return baud;
}
/// \end::uart_init[]
void uart_deinit(uart_inst_t *uart) {
invalid_params_if(UART, uart != uart0 && uart != uart1);
uart_reset(uart);
}
static uint32_t uart_disable_before_lcr_write(uart_inst_t *uart) {
// Notes from PL011 reference manual:
//
// - Before writing the LCR, if the UART is enabled it needs to be
// disabled and any current TX + RX activity has to be completed
//
// - There is a BUSY flag which waits for the current TX char, but this is
// OR'd with TX FIFO !FULL, so not usable when FIFOs are enabled and
// potentially nonempty
//
// - FIFOs can't be set to disabled whilst a character is in progress
// (else "FIFO integrity is not guaranteed")
//
// Combination of these means there is no general way to halt and poll for
// end of TX character, if FIFOs may be enabled. Either way, there is no
// way to poll for end of RX character.
//
// So, insert a 15 Baud period delay before changing the settings.
// 15 Baud is comfortably higher than start + max data + parity + stop.
// Anything else would require API changes to permit a non-enabled UART
// state after init() where settings can be changed safely.
uint32_t cr_save = uart_get_hw(uart)->cr;
if (cr_save & UART_UARTCR_UARTEN_BITS) {
hw_clear_bits(&uart_get_hw(uart)->cr,
UART_UARTCR_UARTEN_BITS | UART_UARTCR_TXE_BITS | UART_UARTCR_RXE_BITS);
uint32_t current_ibrd = uart_get_hw(uart)->ibrd;
uint32_t current_fbrd = uart_get_hw(uart)->fbrd;
// Note: Maximise precision here. Show working, the compiler will mop this up.
// Create a 16.6 fixed-point fractional division ratio; then scale to 32-bits.
uint32_t brdiv_ratio = 64u * current_ibrd + current_fbrd;
brdiv_ratio <<= 10;
// 3662 is ~(15 * 244.14) where 244.14 is 16e6 / 2^16
uint32_t scaled_freq = clock_get_hz(clk_peri) / 3662ul;
uint32_t wait_time_us = brdiv_ratio / scaled_freq;
busy_wait_us(wait_time_us);
}
return cr_save;
}
static void uart_write_lcr_bits_masked(uart_inst_t *uart, uint32_t values, uint32_t write_mask) {
invalid_params_if(UART, uart != uart0 && uart != uart1);
// (Potentially) Cleanly handle disabling the UART before touching LCR
uint32_t cr_save = uart_disable_before_lcr_write(uart);
hw_write_masked(&uart_get_hw(uart)->lcr_h, values, write_mask);
uart_get_hw(uart)->cr = cr_save;
}
/// \tag::uart_set_baudrate[]
uint uart_set_baudrate(uart_inst_t *uart, uint baudrate) {
invalid_params_if(UART, baudrate == 0);
uint32_t baud_rate_div = (8 * clock_get_hz(clk_peri) / baudrate);
uint32_t baud_ibrd = baud_rate_div >> 7;
uint32_t baud_fbrd;
if (baud_ibrd == 0) {
baud_ibrd = 1;
baud_fbrd = 0;
} else if (baud_ibrd >= 65535) {
baud_ibrd = 65535;
baud_fbrd = 0;
} else {
baud_fbrd = ((baud_rate_div & 0x7f) + 1) / 2;
}
uart_get_hw(uart)->ibrd = baud_ibrd;
uart_get_hw(uart)->fbrd = baud_fbrd;
// PL011 needs a (dummy) LCR_H write to latch in the divisors.
// We don't want to actually change LCR_H contents here.
uart_write_lcr_bits_masked(uart, 0, 0);
// See datasheet
return (4 * clock_get_hz(clk_peri)) / (64 * baud_ibrd + baud_fbrd);
}
/// \end::uart_set_baudrate[]
void uart_set_format(uart_inst_t *uart, uint data_bits, uint stop_bits, uart_parity_t parity) {
invalid_params_if(UART, data_bits < 5 || data_bits > 8);
invalid_params_if(UART, stop_bits != 1 && stop_bits != 2);
invalid_params_if(UART, parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN && parity != UART_PARITY_ODD);
uart_write_lcr_bits_masked(uart,
((data_bits - 5u) << UART_UARTLCR_H_WLEN_LSB) |
((stop_bits - 1u) << UART_UARTLCR_H_STP2_LSB) |
(bool_to_bit(parity != UART_PARITY_NONE) << UART_UARTLCR_H_PEN_LSB) |
(bool_to_bit(parity == UART_PARITY_EVEN) << UART_UARTLCR_H_EPS_LSB),
UART_UARTLCR_H_WLEN_BITS |
UART_UARTLCR_H_STP2_BITS |
UART_UARTLCR_H_PEN_BITS |
UART_UARTLCR_H_EPS_BITS);
}
void uart_set_fifo_enabled(uart_inst_t *uart, bool enabled) {
uint32_t lcr_h_fen_bits = 0;
if (enabled) {
lcr_h_fen_bits = UART_UARTLCR_H_FEN_BITS;
}
uart_write_lcr_bits_masked(uart, lcr_h_fen_bits, UART_UARTLCR_H_FEN_BITS);
}
void uart_set_break(uart_inst_t *uart, bool en) {
uint32_t lcr_h_brk_bits = 0;
if (en) {
lcr_h_brk_bits = UART_UARTLCR_H_BRK_BITS;
}
uart_write_lcr_bits_masked(uart, lcr_h_brk_bits, UART_UARTLCR_H_BRK_BITS);
}
void uart_set_translate_crlf(uart_inst_t *uart, bool crlf) {
#if PICO_UART_ENABLE_CRLF_SUPPORT
uart_char_to_line_feed[uart_get_index(uart)] = crlf ? '\n' : 0x100;
#else
panic_unsupported();
#endif
}
bool uart_is_readable_within_us(uart_inst_t *uart, uint32_t us) {
uint32_t t = time_us_32();
do {
if (uart_is_readable(uart)) {
return true;
}
} while ((time_us_32() - t) <= us);
return false;
}