-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday11.rs
239 lines (192 loc) · 6.16 KB
/
day11.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//! [Day 11: Radioisotope Thermoelectric Generators](https://adventofcode.com/2016/day/11)
use regex::Regex;
use rustc_hash::{FxHashMap, FxHashSet};
use std::collections::VecDeque;
// Nota: the state could by 7*2+2=16 bits wide 2 bits for each generator and microchip and 2 for the elevator
// I don't know if it'd be really faster.
#[derive(Clone, PartialEq, Eq)]
struct State {
items: Vec<u8>, // generators then microchips current floor
elevator: u8, // elevator current floor
}
impl State {
// Same remark: the hash is actually 66 bits wide (9 bytes).
// but it's about the same speed if I use a u128 integer as the hash key
fn key(&self) -> [u8; 9] {
// the hash algorithm is a critical optimization!
let mut key = [0u8; 9];
// count generators by floor
for x in self.generators() {
key[usize::from(*x)] += 1;
}
// count microchips by floor
for x in self.microchips() {
key[4 + usize::from(*x)] += 1;
}
key[8] = self.elevator;
key
}
}
impl State {
fn n(&self) -> usize {
self.items.len() / 2
}
fn generators(&self) -> &[u8] {
&self.items[..self.n()]
}
fn microchips(&self) -> &[u8] {
&self.items[self.n()..]
}
fn is_valid(&self) -> bool {
for (generator, chip) in self.generators().iter().zip(self.microchips().iter()) {
if chip != generator && self.generators().iter().any(|gen| gen == chip) {
return false;
}
}
true
}
fn is_solved(&self) -> bool {
self.items.iter().all(|floor| floor == &3)
}
fn up(&self, idx: usize) -> Self {
let mut new_state = self.clone();
new_state.items[idx] += 1;
new_state.elevator += 1;
new_state
}
fn down(&self, idx: usize) -> Self {
let mut new_state = self.clone();
new_state.items[idx] -= 1;
new_state.elevator -= 1;
new_state
}
fn up_two(&self, idx1: usize, idx2: usize) -> Self {
let mut new_state = self.clone();
new_state.items[idx1] += 1;
new_state.items[idx2] += 1;
new_state.elevator += 1;
new_state
}
fn down_two(&self, idx1: usize, idx2: usize) -> Self {
let mut new_state = self.clone();
new_state.items[idx1] -= 1;
new_state.items[idx2] -= 1;
new_state.elevator -= 1;
new_state
}
fn solve(&self) -> u32 {
let mut seen = FxHashSet::default();
let mut queue = VecDeque::new();
queue.push_front((self.clone(), 0));
let n_items = self.items.len();
while let Some((state, steps)) = queue.pop_back() {
let hash = state.key();
if seen.contains(&hash) {
continue;
}
// seems to be a little faster to hash/lookup than to check if a chip will be fried
if !state.is_valid() {
continue;
}
if state.is_solved() {
return steps;
}
seen.insert(hash);
let floor = state.elevator;
for i in 0..n_items {
if state.items[i] == floor {
if floor < 3 {
queue.push_front((state.up(i), steps + 1));
}
if floor > 0 {
queue.push_front((state.down(i), steps + 1));
}
for j in (i + 1)..n_items {
if state.items[j] == floor {
if floor < 3 {
queue.push_front((state.up_two(i, j), steps + 1));
}
if floor > 0 {
queue.push_front((state.down_two(i, j), steps + 1));
}
}
}
}
}
}
0
}
}
struct Puzzle {
initial: State,
}
impl Puzzle {
/// Initialize from the puzzle input.
fn new(data: &str) -> Self {
let mut generators = Vec::new();
let mut microchips = Vec::new();
let mut elements = FxHashMap::default();
let re = Regex::new(r"a \b(\w+)( generator|\-compatible microchip)").unwrap();
for (floor, line) in (0u8..).zip(data.lines()) {
for caps in re.captures_iter(line) {
if let Some(element) = caps.get(1) {
let element = element.as_str();
let n = elements.len();
let idx = *elements.entry(element).or_insert(n);
if let Some(kind) = caps.get(2) {
generators.resize(elements.len(), 0);
microchips.resize(elements.len(), 0);
if kind.as_str() == " generator" {
generators[idx] = floor;
} else {
microchips[idx] = floor;
}
}
}
}
}
generators.extend(µchips);
Self {
initial: State {
items: generators,
elevator: 0,
},
}
}
/// Solve part one.
fn part1(&self) -> u32 {
self.initial.solve()
}
/// Solve part two.
fn part2(&self) -> u32 {
let mut new_items = self.initial.clone();
let m = new_items.n();
// insert two new microchips
new_items.items.insert(m, 0);
new_items.items.insert(m, 0);
// then insert the two new generators
new_items.items.insert(0, 0);
new_items.items.insert(0, 0);
new_items.solve()
}
}
/// # Panics
#[must_use]
pub fn solve(data: &str) -> (u32, u32) {
let puzzle = Puzzle::new(data);
(puzzle.part1(), puzzle.part2())
}
pub fn main() {
let args = aoc::parse_args();
args.run(solve);
}
#[cfg(test)]
mod test {
use super::*;
const TEST_INPUT: &str = include_str!("test.txt");
#[test]
fn part1() {
let puzzle = Puzzle::new(TEST_INPUT);
assert_eq!(puzzle.part1(), 11);
}
}