forked from ruudvdent/WAM2layersPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCon_E_Recyc_Plots.py
281 lines (229 loc) · 13.5 KB
/
Con_E_Recyc_Plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 16 13:24:45 2016
@author: Ent00002
"""
#%% Import libraries
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
from getconstants import getconstants
from matplotlib.colors import LinearSegmentedColormap
import os
#%% BEGIN OF INPUT (FILL THIS IN)
years = np.arange(2002,2009) #fill in the years
# Manage the extent of your dataset (FILL THIS IN)
# Define the latitude and longitude cell numbers to consider and corresponding lakes that should be considered part of the land
latnrs = np.arange(7,114)
lonnrs = np.arange(0,240)
# the lake numbers below belong to the ERA-Interim data on 1.5 degree starting at Northern latitude 79.5 and longitude -180
lake_mask_1 = np.array([9,9,9,12,12,21,21,22,22,23,24,25,23,23,25,25,53,54,61,23,24,23,24,25,27,22,23,24,25,26,27,28,22,25,26,27,28,23,23,12,18])
lake_mask_2 = np.array([120+19,120+40,120+41,120+43,120+44,120+61,120+62,120+62,120+63,120+62,120+62,120+62,120+65,120+66,120+65,120+66,142-120,142-120,143-120,152-120,152-120,153-120,153-120,153-120,153-120,154-120,154-120,154-120,154-120,154-120,154-120,154-120,155-120,155-120,155-120,155-120,155-120,159-120,160-120,144-120,120+55])
lake_mask = np.transpose(np.vstack((lake_mask_1,lake_mask_2))) #recreate the arrays of the matlab model
# obtain the constants
invariant_data = 'Interim_data/full/invariants.nc'#invariants
latitude,longitude,lsm,g,density_water,timestep,A_gridcell,L_N_gridcell,L_S_gridcell,L_EW_gridcell,gridcell = getconstants(latnrs,lonnrs,lake_mask,invariant_data)
A_gridcell2D = np.tile(A_gridcell,len(longitude));
# BEGIN OF INPUT 2 (FILL THIS IN)
timetracking = 1 # 0 for not tracking time and 1 for tracking time
Region = lsm
output_folder = r'C:\Users\bec\Desktop\WAM2\output'
# END OF INPUT
#%% Datapaths (FILL THIS IN)
def data_path(years,timetracking):
load_data_pypm = os.path.join(output_folder, 'E_track_continental_full' + str(years[0]) + '-' + str(years[-1]) + '-timetracking' + str(timetracking) + '.mat')
load_data_hf = os.path.join(output_folder, 'Hor_Fluxes_full' + str(years[0]) + '-' + str(years[-1]) + '.mat')
return load_data_pypm, load_data_hf
#%% Calculations
# loading vertical fluxes and storages
datapath = data_path(years,timetracking)
loading_pypm = sio.loadmat(datapath[0])
E_per_year_per_month = loading_pypm['E_per_year_per_month']
E_track_per_year_per_month = loading_pypm['E_track_per_year_per_month']
P_per_year_per_month = loading_pypm['P_per_year_per_month']
Sa_track_down_per_year_per_month = loading_pypm['Sa_track_down_per_year_per_month']
Sa_track_top_per_year_per_month = loading_pypm['Sa_track_top_per_year_per_month']
Sa_time_down_per_year_per_month = loading_pypm['Sa_time_down_per_year_per_month']
Sa_time_top_per_year_per_month = loading_pypm['Sa_time_top_per_year_per_month']
E_time_per_year_per_month = loading_pypm['E_time_per_year_per_month']
#########
test = E_time_per_year_per_month[0,0,:,:]
W_down_per_year_per_month = loading_pypm['W_down_per_year_per_month']
W_top_per_year_per_month = loading_pypm['W_top_per_year_per_month']
north_loss_per_year_per_month = loading_pypm['north_loss_per_year_per_month']
south_loss_per_year_per_month = loading_pypm['south_loss_per_year_per_month']
down_to_top_per_year_per_month = loading_pypm['down_to_top_per_year_per_month']
top_to_down_per_year_per_month = loading_pypm['top_to_down_per_year_per_month']
water_lost_per_year_per_month = loading_pypm['water_lost_per_year_per_month']
E_total = np.squeeze(np.sum(np.sum(E_per_year_per_month,axis = 0), axis = 0))
E_c_total = np.squeeze(np.sum(np.sum(E_track_per_year_per_month,axis = 0), axis = 0))
P_total = np.squeeze(np.sum(np.sum(P_per_year_per_month,axis = 0), axis = 0))
# loading horizontal fluxes
loading_HF2S = sio.loadmat(datapath[1])
Fa_E_down_per_year_per_month = loading_HF2S['Fa_E_down_per_year_per_month']
Fa_E_top_per_year_per_month = loading_HF2S['Fa_E_top_per_year_per_month']
Fa_N_down_per_year_per_month = loading_HF2S['Fa_N_down_per_year_per_month']
Fa_N_top_per_year_per_month = loading_HF2S['Fa_N_top_per_year_per_month']
Fa_Vert_per_year_per_month = loading_HF2S['Fa_Vert_per_year_per_month']
Fa_E_down_total = np.squeeze(np.sum(np.sum(Fa_E_down_per_year_per_month,axis = 0),axis = 0))
Fa_E_top_total = np.squeeze(np.sum(np.sum(Fa_E_top_per_year_per_month,axis = 0),axis = 0))
Fa_N_down_total = np.squeeze(np.sum(np.sum(Fa_N_down_per_year_per_month,axis = 0),axis = 0))
Fa_N_top_total = np.squeeze(np.sum(np.sum(Fa_N_top_per_year_per_month,axis = 0),axis = 0))
Fa_E_total = Fa_E_down_total + Fa_E_top_total
Fa_N_total = Fa_N_down_total + Fa_N_top_total
# annual average fluxes per unit width (m3/m/a)
Fa_N_total_m2a = np.zeros(np.shape(Fa_N_total))
Fa_N_down_total_m2a = np.zeros(np.shape(Fa_N_down_total))
Fa_N_top_total_m2a = np.zeros(np.shape(Fa_N_top_total))
for i in range(len(latitude)):
Fa_N_total_m2a[i,:] = (Fa_N_total[i,:] / (0.5*(L_N_gridcell[i] + L_S_gridcell[i])))/len(years)
Fa_N_down_total_m2a[i,:] = (Fa_N_down_total[i,:] / (0.5*(L_N_gridcell[i] + L_S_gridcell[i])))/len(years)
Fa_N_top_total_m2a[i,:] = (Fa_N_top_total[i,:] / (0.5*(L_N_gridcell[i] + L_S_gridcell[i])))/len(years)
Fa_E_total_m2a = (Fa_E_total / L_EW_gridcell) / len(years) # Annual average flux per unit width (m3/m/a)
Fa_E_down_total_m2a = (Fa_E_down_total / L_EW_gridcell) / len(years) # Annual average flux per unit width (m3/m/a)
Fa_E_top_total_m2a = (Fa_E_top_total / L_EW_gridcell) / len(years) # Annual average flux per unit width (m3/m/a)
# fluxes for plotting
FluxDispMatSmall = np.zeros([5,5])
FluxDispMatSmall[3,2] = 1
FluxDispMat = np.tile(FluxDispMatSmall,[np.floor(len(latitude)/5+1),np.floor(len(longitude)/5)+1])
FluxDispMat = FluxDispMat[:len(latitude),:len(longitude)]
Fa_E_total_m2a_part = Fa_E_total_m2a * FluxDispMat
Fa_N_total_m2a_part = Fa_N_total_m2a * FluxDispMat
Fa_E_down_total_m2a_part = Fa_E_down_total_m2a * FluxDispMat
Fa_N_down_total_m2a_part = Fa_N_down_total_m2a * FluxDispMat
Fa_E_top_total_m2a_part = Fa_E_top_total_m2a * FluxDispMat
Fa_N_top_total_m2a_part = Fa_N_top_total_m2a * FluxDispMat
# recycling metrics
eps_c_total = E_c_total / E_total
#only on land
E_landtotal = np.array(E_total)
E_landtotal[Region == 0] = 0
P_landtotal = np.array(P_total)
P_landtotal[Region == 0] = 0
E_c_landtotal = np.array(E_c_total)
E_c_landtotal[Region == 0] = 0
eps_c_landtotal = np.array(eps_c_total)
eps_c_landtotal[Region == 0] = -0.1
eps_c_abslandtotal = np.sum(np.sum(E_c_landtotal, axis = 0))/np.sum(np.sum(E_landtotal, axis = 0))
#what happens
Test_E_c = np.sum(E_c_total)
Test_P_land = np.sum(P_landtotal)
Mean_down_to_top = np.squeeze(np.sum(np.sum(down_to_top_per_year_per_month, axis = 0), axis = 0))
Test_down_to_top = np.sum(Mean_down_to_top)
Mean_top_to_down = np.squeeze(np.sum(np.sum(top_to_down_per_year_per_month, axis = 0), axis = 0))
Test_top_to_down = np.sum(Mean_top_to_down)
Mean_water_lost = np.squeeze(np.sum(np.sum(water_lost_per_year_per_month, axis = 0), axis = 0))
Test_water_lost = np.sum(Mean_water_lost)
Test_north_loss = np.sum(north_loss_per_year_per_month)
Test_south_loss = np.sum(south_loss_per_year_per_month)
Isthis100procent = (Test_E_c + Test_water_lost + Test_north_loss + Test_south_loss) / Test_P_land
print Isthis100procent*100
#just to know
water_lost_vertically = (Test_water_lost)/np.sum(E_landtotal)
water_lost_north = (Test_north_loss)/np.sum(E_landtotal)
water_lost_south = (Test_south_loss)/np.sum(E_landtotal)
print(water_lost_vertically*100, water_lost_north*100, water_lost_south*100)
#%% Plotting constants
get_ipython().magic(u'matplotlib qt')
from mpl_toolkits.basemap import Basemap
cdict = {'red': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.66, 1, 1),
(0.89, 1, 1),
(1, 0.5, 0.5),
(1, 0, 0)),
'green': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.375, 1, 1),
(0.64, 1, 1),
(0.91, 0, 0),
(1, 0, 0)),
'blue': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 1, 1),
(0.34, 1, 1),
(0.65, 0, 0),
(1, 0, 0))}
my_cmap = LinearSegmentedColormap('my_colormap',cdict,256)
vmax = 1.0
cmap = LinearSegmentedColormap.from_list('mycmap', [(0 / vmax, 'white'),
(0.01 / vmax, 'blue'),
(0.3 / vmax, 'lightgreen'),
(0.5 / vmax, 'orange'),
(0.6 / vmax, 'red'),
(1.0 / vmax, 'black')])
#%% Plots
#plt.close('all')
################### CONTOUR PLOT
plt.figure() # nice projections are 'cea', 'cyl', 'eck4' and 'robin', however only 'cea' and 'cyl' allows for not showing the entire world
map = Basemap(projection='robin',lat_0=0,lon_0=0,
llcrnrlon=-180, llcrnrlat=-78,
urcrnrlon=180, urcrnrlat=78)
map.drawcoastlines(linewidth=0.25)
map.drawcountries(linewidth=0.25)
map.drawmeridians(np.arange(0,360,30),linewidth=0.1)
map.drawparallels(np.arange(-90,90,30),linewidth=0.1)
x_shift,y_shift = np.meshgrid(longitude,latitude)
x = x_shift
y = y_shift
# contour data over the map.
clevs = np.linspace(0,1.00,11)
clevs2 = np.linspace(0,1,1100)
cs = map.contourf(x,y,eps_c_landtotal,clevs2,linewidths=1.5,latlon=True, cmap=cmap)
map.colorbar(cs,location='right',pad="5%", ticks = clevs, label = '(-)')
plt.title('Continental evaporation recycling ratio ' r'$\epsilon_c$', fontsize = 14)
plt.show()
#%% ###################### GRIDCELL PLOT
plt.figure() # nice projections are 'cea', 'cyl', 'eck4' and 'robin', however only 'cea' and 'cyl' allows for not showing the entire world
map = Basemap(projection='cyl',lat_0=0,lon_0=0,
llcrnrlon=-180, llcrnrlat=-78,
urcrnrlon=180, urcrnrlat=78)
map.drawcoastlines(linewidth=0.25)
map.drawcountries(linewidth=0.25)
x_shift,y_shift = np.meshgrid(longitude,latitude)
x = x_shift - 0.75
y = y_shift + 0.75
lol = map.pcolormesh(x,y,eps_c_landtotal, latlon=True, cmap=cmap,vmin=0,vmax=1)
map.colorbar(lol,location='right',pad="5%", label = '(-)')
#windplot = map.quiver(x,y,Fa_E_total_m2a_part,Fa_N_total_m2a_part,color = 'black',scale = 199999999,latlon=True,width = 0.002, headaxislength = 5, headwidth = 2)
#adjust scale till arrows are visible
plt.title('Continental evaporation recycling ratio ' r'$\epsilon_c$', fontsize = 14)
plt.show()
#%% simplest imshow plot
plt.figure()
plt.imshow(eps_c_landtotal)
plt.colorbar()
#%% Timetracking results
# these results are very crude and just meant for a quick check. For publications these have been calculated more detailed
#######################################
# possible check to do the same with daily output or timestep output
########################################
# for some reasons the sizes of the variables in the "variable explorer" of Spyder get wrongly displayed after running code below, but calling them from the memory works fine
if timetracking == 1:
Sa_track_down_average = np.squeeze(np.mean(np.mean(Sa_track_down_per_year_per_month, axis=0), axis = 0)) #m3
Sa_track_top_average = np.squeeze(np.mean(np.mean(Sa_track_top_per_year_per_month, axis=0), axis = 0)) #m3
Sa_track_average = Sa_track_down_average + Sa_track_top_average #m3
Sa_track_down_average_mm = Sa_track_down_average / A_gridcell2D *1000 #mm
Sa_track_top_average_mm = Sa_track_top_average / A_gridcell2D *1000 #mm
Sa_track_average_mm = Sa_track_average / A_gridcell2D *1000 #mm
Sa_time_down_average = np.squeeze(np.mean(np.mean(Sa_time_down_per_year_per_month, axis=0), axis = 0)) / 86400 #d quick assesment
Sa_time_top_average = np.squeeze(np.mean(np.mean(Sa_time_top_per_year_per_month, axis=0), axis = 0)) / 86400 #d quick assesment
Sa_time_average = (( np.squeeze(np.mean(np.mean(Sa_time_down_per_year_per_month * Sa_track_down_per_year_per_month, axis=0), axis = 0))
+ np.squeeze(np.mean(np.mean(Sa_time_top_per_year_per_month * Sa_track_top_per_year_per_month,axis=0), axis = 0))
) / Sa_track_average / 86400) #d
Sa_track_down_average = np.squeeze(np.mean(np.mean(Sa_track_down_per_year_per_month, axis=0), axis = 0)) #m3
Sa_track_top_average = np.squeeze(np.mean(np.mean(Sa_track_top_per_year_per_month, axis=0), axis = 0)) #m3
age_down_track_water_global_mean = (np.sum(np.sum(Sa_time_down_average[1:-1,:] * Sa_track_down_average[1:-1,:], axis = 0 ), axis = 0)
/ np.sum(np.sum(Sa_track_down_average[1:-1,:], axis = 0), axis = 0)) #d
age_top_track_water_global_mean = (np.sum(np.sum(Sa_time_top_average[1:-1,:] * Sa_track_top_average[1:-1,:], axis = 0 ), axis = 0)
/ np.sum(np.sum(Sa_track_top_average[1:-1,:], axis = 0), axis = 0)) #d
age_track_water_global_mean = (( np.sum(np.sum(Sa_time_down_average[1:-1,:] * Sa_track_down_average[1:-1,:], axis = 0), axis = 0)
+ np.sum(np.sum(Sa_time_top_average[1:-1,:] * Sa_track_top_average[1:-1,:], axis = 0 ), axis = 0) )
/ ( np.sum(np.sum(Sa_track_down_average[1:-1,:], axis = 0), axis = 0) + np.sum(np.sum(Sa_track_top_average[1:-1,:], axis = 0), axis = 0) )) #d
E_c_average = np.squeeze(np.sum(np.sum(E_track_per_year_per_month, axis = 0), axis = 0) ) / len(years) #m3 per year
E_c_time_average = ( ( np.squeeze(np.sum(np.sum(E_time_per_year_per_month * E_track_per_year_per_month, axis = 0), axis = 0))
/ len(years) ) / E_c_average / 86400 ) #d
# replace possible nans for a smooth plot
E_c_time_average[np.isnan(E_c_time_average)] = Sa_time_average[np.isnan(E_c_time_average)]