-
Notifications
You must be signed in to change notification settings - Fork 13.2k
/
Copy pathlayout.rs
884 lines (789 loc) · 36 KB
/
layout.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
use hir::def_id::DefId;
use rustc_abi::Integer::{I8, I32};
use rustc_abi::Primitive::{self, Float, Int, Pointer};
use rustc_abi::{
AddressSpace, BackendRepr, FIRST_VARIANT, FieldIdx, FieldsShape, HasDataLayout, Layout,
LayoutCalculatorError, LayoutData, Niche, ReprOptions, Scalar, Size, StructKind, TagEncoding,
VariantIdx, Variants, WrappingRange,
};
use rustc_hashes::Hash64;
use rustc_index::IndexVec;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
FloatExt, HasTyCtxt, IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout,
};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{
self, AdtDef, CoroutineArgsExt, EarlyBinder, PseudoCanonicalInput, Ty, TyCtxt, TypeVisitableExt,
};
use rustc_session::{DataTypeKind, FieldInfo, FieldKind, SizeKind, VariantInfo};
use rustc_span::{Symbol, sym};
use tracing::{debug, instrument};
use {rustc_abi as abi, rustc_hir as hir};
use crate::errors::{NonPrimitiveSimdType, OversizedSimdType, ZeroLengthSimdType};
mod invariant;
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { layout_of, ..*providers };
}
#[instrument(skip(tcx, query), level = "debug")]
fn layout_of<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>,
) -> Result<TyAndLayout<'tcx>, &'tcx LayoutError<'tcx>> {
let PseudoCanonicalInput { typing_env, value: ty } = query;
debug!(?ty);
// Optimization: We convert to TypingMode::PostAnalysis and convert opaque types in
// the where bounds to their hidden types. This reduces overall uncached invocations
// of `layout_of` and is thus a small performance improvement.
let typing_env = typing_env.with_post_analysis_normalized(tcx);
let unnormalized_ty = ty;
// FIXME: We might want to have two different versions of `layout_of`:
// One that can be called after typecheck has completed and can use
// `normalize_erasing_regions` here and another one that can be called
// before typecheck has completed and uses `try_normalize_erasing_regions`.
let ty = match tcx.try_normalize_erasing_regions(typing_env, ty) {
Ok(t) => t,
Err(normalization_error) => {
return Err(tcx
.arena
.alloc(LayoutError::NormalizationFailure(ty, normalization_error)));
}
};
if ty != unnormalized_ty {
// Ensure this layout is also cached for the normalized type.
return tcx.layout_of(typing_env.as_query_input(ty));
}
let cx = LayoutCx::new(tcx, typing_env);
let layout = layout_of_uncached(&cx, ty)?;
let layout = TyAndLayout { ty, layout };
// If we are running with `-Zprint-type-sizes`, maybe record layouts
// for dumping later.
if cx.tcx().sess.opts.unstable_opts.print_type_sizes {
record_layout_for_printing(&cx, layout);
}
invariant::layout_sanity_check(&cx, &layout);
Ok(layout)
}
fn error<'tcx>(cx: &LayoutCx<'tcx>, err: LayoutError<'tcx>) -> &'tcx LayoutError<'tcx> {
cx.tcx().arena.alloc(err)
}
fn map_error<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
err: LayoutCalculatorError<TyAndLayout<'tcx>>,
) -> &'tcx LayoutError<'tcx> {
let err = match err {
LayoutCalculatorError::SizeOverflow => {
// This is sometimes not a compile error in `check` builds.
// See `tests/ui/limits/huge-enum.rs` for an example.
LayoutError::SizeOverflow(ty)
}
LayoutCalculatorError::UnexpectedUnsized(field) => {
// This is sometimes not a compile error if there are trivially false where clauses.
// See `tests/ui/layout/trivial-bounds-sized.rs` for an example.
assert!(field.layout.is_unsized(), "invalid layout error {err:#?}");
if cx.typing_env.param_env.caller_bounds().is_empty() {
cx.tcx().dcx().delayed_bug(format!(
"encountered unexpected unsized field in layout of {ty:?}: {field:#?}"
));
}
LayoutError::Unknown(ty)
}
LayoutCalculatorError::EmptyUnion => {
// This is always a compile error.
let guar =
cx.tcx().dcx().delayed_bug(format!("computed layout of empty union: {ty:?}"));
LayoutError::ReferencesError(guar)
}
LayoutCalculatorError::ReprConflict => {
// packed enums are the only known trigger of this, but others might arise
let guar = cx
.tcx()
.dcx()
.delayed_bug(format!("computed impossible repr (packed enum?): {ty:?}"));
LayoutError::ReferencesError(guar)
}
LayoutCalculatorError::ZeroLengthSimdType => {
// Can't be caught in typeck if the array length is generic.
cx.tcx().dcx().emit_fatal(ZeroLengthSimdType { ty })
}
LayoutCalculatorError::OversizedSimdType { max_lanes } => {
// Can't be caught in typeck if the array length is generic.
cx.tcx().dcx().emit_fatal(OversizedSimdType { ty, max_lanes })
}
LayoutCalculatorError::NonPrimitiveSimdType(field) => {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
cx.tcx().dcx().emit_fatal(NonPrimitiveSimdType { ty, e_ty: field.ty })
}
};
error(cx, err)
}
fn extract_const_value<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
ct: ty::Const<'tcx>,
) -> Result<ty::Value<'tcx>, &'tcx LayoutError<'tcx>> {
match ct.kind() {
ty::ConstKind::Value(cv) => Ok(cv),
ty::ConstKind::Param(_) | ty::ConstKind::Expr(_) => {
if !ct.has_param() {
bug!("failed to normalize const, but it is not generic: {ct:?}");
}
Err(error(cx, LayoutError::TooGeneric(ty)))
}
ty::ConstKind::Unevaluated(_) => {
let err = if ct.has_param() {
LayoutError::TooGeneric(ty)
} else {
// This case is reachable with unsatisfiable predicates and GCE (which will
// cause anon consts to inherit the unsatisfiable predicates). For example
// if we have an unsatisfiable `u8: Trait` bound, then it's not a compile
// error to mention `[u8; <u8 as Trait>::CONST]`, but we can't compute its
// layout.
LayoutError::Unknown(ty)
};
Err(error(cx, err))
}
ty::ConstKind::Infer(_)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Error(_) => {
// `ty::ConstKind::Error` is handled at the top of `layout_of_uncached`
// (via `ty.error_reported()`).
bug!("layout_of: unexpected const: {ct:?}");
}
}
}
fn layout_of_uncached<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>> {
// Types that reference `ty::Error` pessimistically don't have a meaningful layout.
// The only side-effect of this is possibly worse diagnostics in case the layout
// was actually computable (like if the `ty::Error` showed up only in a `PhantomData`).
if let Err(guar) = ty.error_reported() {
return Err(error(cx, LayoutError::ReferencesError(guar)));
}
let tcx = cx.tcx();
let dl = cx.data_layout();
let map_layout = |result: Result<_, _>| match result {
Ok(layout) => Ok(tcx.mk_layout(layout)),
Err(err) => Err(map_error(cx, ty, err)),
};
let scalar_unit = |value: Primitive| {
let size = value.size(dl);
assert!(size.bits() <= 128);
Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
};
let scalar = |value: Primitive| tcx.mk_layout(LayoutData::scalar(cx, scalar_unit(value)));
let univariant = |tys: &[Ty<'tcx>], kind| {
let fields = tys.iter().map(|ty| cx.layout_of(*ty)).try_collect::<IndexVec<_, _>>()?;
let repr = ReprOptions::default();
map_layout(cx.calc.univariant(&fields, &repr, kind))
};
debug_assert!(!ty.has_non_region_infer());
Ok(match *ty.kind() {
ty::Pat(ty, pat) => {
let layout = cx.layout_of(ty)?.layout;
let mut layout = LayoutData::clone(&layout.0);
match *pat {
ty::PatternKind::Range { start, end } => {
if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
&mut layout.backend_repr
{
scalar.valid_range_mut().start = extract_const_value(cx, ty, start)?
.try_to_bits(tcx, cx.typing_env)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
scalar.valid_range_mut().end = extract_const_value(cx, ty, end)?
.try_to_bits(tcx, cx.typing_env)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
// FIXME(pattern_types): create implied bounds from pattern types in signatures
// that require that the range end is >= the range start so that we can't hit
// this error anymore without first having hit a trait solver error.
// Very fuzzy on the details here, but pattern types are an internal impl detail,
// so we can just go with this for now
if scalar.is_signed() {
let range = scalar.valid_range_mut();
let start = layout.size.sign_extend(range.start);
let end = layout.size.sign_extend(range.end);
if end < start {
let guar = tcx.dcx().err(format!(
"pattern type ranges cannot wrap: {start}..={end}"
));
return Err(error(cx, LayoutError::ReferencesError(guar)));
}
} else {
let range = scalar.valid_range_mut();
if range.end < range.start {
let guar = tcx.dcx().err(format!(
"pattern type ranges cannot wrap: {}..={}",
range.start, range.end
));
return Err(error(cx, LayoutError::ReferencesError(guar)));
}
};
let niche = Niche {
offset: Size::ZERO,
value: scalar.primitive(),
valid_range: scalar.valid_range(cx),
};
layout.largest_niche = Some(niche);
tcx.mk_layout(layout)
} else {
bug!("pattern type with range but not scalar layout: {ty:?}, {layout:?}")
}
}
}
}
// Basic scalars.
ty::Bool => tcx.mk_layout(LayoutData::scalar(
cx,
Scalar::Initialized {
value: Int(I8, false),
valid_range: WrappingRange { start: 0, end: 1 },
},
)),
ty::Char => tcx.mk_layout(LayoutData::scalar(
cx,
Scalar::Initialized {
value: Int(I32, false),
valid_range: WrappingRange { start: 0, end: 0x10FFFF },
},
)),
ty::Int(ity) => scalar(Int(abi::Integer::from_int_ty(dl, ity), true)),
ty::Uint(ity) => scalar(Int(abi::Integer::from_uint_ty(dl, ity), false)),
ty::Float(fty) => scalar(Float(abi::Float::from_float_ty(fty))),
ty::FnPtr(..) => {
let mut ptr = scalar_unit(Pointer(dl.instruction_address_space));
ptr.valid_range_mut().start = 1;
tcx.mk_layout(LayoutData::scalar(cx, ptr))
}
// The never type.
ty::Never => tcx.mk_layout(LayoutData::never_type(cx)),
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(pointee, _) => {
let mut data_ptr = scalar_unit(Pointer(AddressSpace::DATA));
if !ty.is_raw_ptr() {
data_ptr.valid_range_mut().start = 1;
}
if pointee.is_sized(tcx, cx.typing_env) {
return Ok(tcx.mk_layout(LayoutData::scalar(cx, data_ptr)));
}
let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type() {
let pointee_metadata = Ty::new_projection(tcx, metadata_def_id, [pointee]);
let metadata_ty =
match tcx.try_normalize_erasing_regions(cx.typing_env, pointee_metadata) {
Ok(metadata_ty) => metadata_ty,
Err(mut err) => {
// Usually `<Ty as Pointee>::Metadata` can't be normalized because
// its struct tail cannot be normalized either, so try to get a
// more descriptive layout error here, which will lead to less confusing
// diagnostics.
//
// We use the raw struct tail function here to get the first tail
// that is an alias, which is likely the cause of the normalization
// error.
match tcx.try_normalize_erasing_regions(
cx.typing_env,
tcx.struct_tail_raw(pointee, |ty| ty, || {}),
) {
Ok(_) => {}
Err(better_err) => {
err = better_err;
}
}
return Err(error(cx, LayoutError::NormalizationFailure(pointee, err)));
}
};
let metadata_layout = cx.layout_of(metadata_ty)?;
// If the metadata is a 1-zst, then the pointer is thin.
if metadata_layout.is_1zst() {
return Ok(tcx.mk_layout(LayoutData::scalar(cx, data_ptr)));
}
let BackendRepr::Scalar(metadata) = metadata_layout.backend_repr else {
return Err(error(cx, LayoutError::Unknown(pointee)));
};
metadata
} else {
let unsized_part = tcx.struct_tail_for_codegen(pointee, cx.typing_env);
match unsized_part.kind() {
ty::Foreign(..) => {
return Ok(tcx.mk_layout(LayoutData::scalar(cx, data_ptr)));
}
ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
ty::Dynamic(..) => {
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
vtable.valid_range_mut().start = 1;
vtable
}
_ => {
return Err(error(cx, LayoutError::Unknown(pointee)));
}
}
};
// Effectively a (ptr, meta) tuple.
tcx.mk_layout(LayoutData::scalar_pair(cx, data_ptr, metadata))
}
ty::Dynamic(_, _, ty::DynStar) => {
let mut data = scalar_unit(Pointer(AddressSpace::DATA));
data.valid_range_mut().start = 0;
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
vtable.valid_range_mut().start = 1;
tcx.mk_layout(LayoutData::scalar_pair(cx, data, vtable))
}
// Arrays and slices.
ty::Array(element, count) => {
let count = extract_const_value(cx, ty, count)?
.try_to_target_usize(tcx)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
let element = cx.layout_of(element)?;
map_layout(cx.calc.array_like(&element, Some(count)))?
}
ty::Slice(element) => {
let element = cx.layout_of(element)?;
map_layout(cx.calc.array_like(&element, None).map(|mut layout| {
// a randomly chosen value to distinguish slices
layout.randomization_seed = Hash64::new(0x2dcba99c39784102);
layout
}))?
}
ty::Str => {
let element = scalar(Int(I8, false));
map_layout(cx.calc.array_like(&element, None).map(|mut layout| {
// another random value
layout.randomization_seed = Hash64::new(0xc1325f37d127be22);
layout
}))?
}
// Odd unit types.
ty::FnDef(..) | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
let sized = matches!(ty.kind(), ty::FnDef(..));
tcx.mk_layout(LayoutData::unit(cx, sized))
}
ty::Coroutine(def_id, args) => {
use rustc_middle::ty::layout::PrimitiveExt as _;
let Some(info) = tcx.coroutine_layout(def_id, args.as_coroutine().kind_ty()) else {
return Err(error(cx, LayoutError::Unknown(ty)));
};
let local_layouts = info
.field_tys
.iter()
.map(|local| {
let field_ty = EarlyBinder::bind(local.ty);
let uninit_ty = Ty::new_maybe_uninit(tcx, field_ty.instantiate(tcx, args));
cx.spanned_layout_of(uninit_ty, local.source_info.span)
})
.try_collect::<IndexVec<_, _>>()?;
let prefix_layouts = args
.as_coroutine()
.prefix_tys()
.iter()
.map(|ty| cx.layout_of(ty))
.try_collect::<IndexVec<_, _>>()?;
let layout = cx
.calc
.coroutine(
&local_layouts,
prefix_layouts,
&info.variant_fields,
&info.storage_conflicts,
|tag| TyAndLayout {
ty: tag.primitive().to_ty(tcx),
layout: tcx.mk_layout(LayoutData::scalar(cx, tag)),
},
)
.map(|mut layout| {
// this is similar to how ReprOptions populates its field_shuffle_seed
layout.randomization_seed = tcx.def_path_hash(def_id).0.to_smaller_hash();
debug!("coroutine layout ({:?}): {:#?}", ty, layout);
layout
});
map_layout(layout)?
}
ty::Closure(_, args) => univariant(args.as_closure().upvar_tys(), StructKind::AlwaysSized)?,
ty::CoroutineClosure(_, args) => {
univariant(args.as_coroutine_closure().upvar_tys(), StructKind::AlwaysSized)?
}
ty::Tuple(tys) => {
let kind =
if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
univariant(tys, kind)?
}
// SIMD vector types.
ty::Adt(def, args) if def.repr().simd() => {
// Supported SIMD vectors are ADTs with a single array field:
//
// * #[repr(simd)] struct S([T; 4])
//
// where T is a primitive scalar (integer/float/pointer).
let Some(ty::Array(e_ty, e_len)) = def
.is_struct()
.then(|| &def.variant(FIRST_VARIANT).fields)
.filter(|fields| fields.len() == 1)
.map(|fields| *fields[FieldIdx::ZERO].ty(tcx, args).kind())
else {
// Invalid SIMD types should have been caught by typeck by now.
let guar = tcx.dcx().delayed_bug("#[repr(simd)] was applied to an invalid ADT");
return Err(error(cx, LayoutError::ReferencesError(guar)));
};
let e_len = extract_const_value(cx, ty, e_len)?
.try_to_target_usize(tcx)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
let e_ly = cx.layout_of(e_ty)?;
map_layout(cx.calc.simd_type(e_ly, e_len, def.repr().packed()))?
}
// ADTs.
ty::Adt(def, args) => {
// Cache the field layouts.
let variants = def
.variants()
.iter()
.map(|v| {
v.fields
.iter()
.map(|field| cx.layout_of(field.ty(tcx, args)))
.try_collect::<IndexVec<_, _>>()
})
.try_collect::<IndexVec<VariantIdx, _>>()?;
if def.is_union() {
if def.repr().pack.is_some() && def.repr().align.is_some() {
let guar = tcx.dcx().span_delayed_bug(
tcx.def_span(def.did()),
"union cannot be packed and aligned",
);
return Err(error(cx, LayoutError::ReferencesError(guar)));
}
return map_layout(cx.calc.layout_of_union(&def.repr(), &variants));
}
let get_discriminant_type =
|min, max| abi::Integer::repr_discr(tcx, ty, &def.repr(), min, max);
let discriminants_iter = || {
def.is_enum()
.then(|| def.discriminants(tcx).map(|(v, d)| (v, d.val as i128)))
.into_iter()
.flatten()
};
let dont_niche_optimize_enum = def.repr().inhibit_enum_layout_opt()
|| def
.variants()
.iter_enumerated()
.any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()));
let maybe_unsized = def.is_struct()
&& def.non_enum_variant().tail_opt().is_some_and(|last_field| {
let typing_env = ty::TypingEnv::post_analysis(tcx, def.did());
!tcx.type_of(last_field.did).instantiate_identity().is_sized(tcx, typing_env)
});
let layout = cx
.calc
.layout_of_struct_or_enum(
&def.repr(),
&variants,
def.is_enum(),
def.is_unsafe_cell(),
tcx.layout_scalar_valid_range(def.did()),
get_discriminant_type,
discriminants_iter(),
dont_niche_optimize_enum,
!maybe_unsized,
)
.map_err(|err| map_error(cx, ty, err))?;
if !maybe_unsized && layout.is_unsized() {
bug!("got unsized layout for type that cannot be unsized {ty:?}: {layout:#?}");
}
// If the struct tail is sized and can be unsized, check that unsizing doesn't move the fields around.
if cfg!(debug_assertions)
&& maybe_unsized
&& def.non_enum_variant().tail().ty(tcx, args).is_sized(tcx, cx.typing_env)
{
let mut variants = variants;
let tail_replacement = cx.layout_of(Ty::new_slice(tcx, tcx.types.u8)).unwrap();
*variants[FIRST_VARIANT].raw.last_mut().unwrap() = tail_replacement;
let Ok(unsized_layout) = cx.calc.layout_of_struct_or_enum(
&def.repr(),
&variants,
def.is_enum(),
def.is_unsafe_cell(),
tcx.layout_scalar_valid_range(def.did()),
get_discriminant_type,
discriminants_iter(),
dont_niche_optimize_enum,
!maybe_unsized,
) else {
bug!("failed to compute unsized layout of {ty:?}");
};
let FieldsShape::Arbitrary { offsets: sized_offsets, .. } = &layout.fields else {
bug!("unexpected FieldsShape for sized layout of {ty:?}: {:?}", layout.fields);
};
let FieldsShape::Arbitrary { offsets: unsized_offsets, .. } =
&unsized_layout.fields
else {
bug!(
"unexpected FieldsShape for unsized layout of {ty:?}: {:?}",
unsized_layout.fields
);
};
let (sized_tail, sized_fields) = sized_offsets.raw.split_last().unwrap();
let (unsized_tail, unsized_fields) = unsized_offsets.raw.split_last().unwrap();
if sized_fields != unsized_fields {
bug!("unsizing {ty:?} changed field order!\n{layout:?}\n{unsized_layout:?}");
}
if sized_tail < unsized_tail {
bug!("unsizing {ty:?} moved tail backwards!\n{layout:?}\n{unsized_layout:?}");
}
}
tcx.mk_layout(layout)
}
ty::UnsafeBinder(bound_ty) => {
let ty = tcx.instantiate_bound_regions_with_erased(bound_ty.into());
cx.layout_of(ty)?.layout
}
// Types with no meaningful known layout.
ty::Param(_) => {
return Err(error(cx, LayoutError::TooGeneric(ty)));
}
ty::Alias(..) => {
// NOTE(eddyb) `layout_of` query should've normalized these away,
// if that was possible, so there's no reason to try again here.
let err = if ty.has_param() {
LayoutError::TooGeneric(ty)
} else {
// This is only reachable with unsatisfiable predicates. For example, if we have
// `u8: Iterator`, then we can't compute the layout of `<u8 as Iterator>::Item`.
LayoutError::Unknown(ty)
};
return Err(error(cx, err));
}
ty::Placeholder(..)
| ty::Bound(..)
| ty::CoroutineWitness(..)
| ty::Infer(_)
| ty::Error(_) => {
// `ty::Error` is handled at the top of this function.
bug!("layout_of: unexpected type `{ty}`")
}
})
}
fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx>, layout: TyAndLayout<'tcx>) {
// Ignore layouts that are done with non-empty environments or
// non-monomorphic layouts, as the user only wants to see the stuff
// resulting from the final codegen session.
if layout.ty.has_non_region_param() || !cx.typing_env.param_env.caller_bounds().is_empty() {
return;
}
// (delay format until we actually need it)
let record = |kind, packed, opt_discr_size, variants| {
let type_desc = with_no_trimmed_paths!(format!("{}", layout.ty));
cx.tcx().sess.code_stats.record_type_size(
kind,
type_desc,
layout.align.abi,
layout.size,
packed,
opt_discr_size,
variants,
);
};
match *layout.ty.kind() {
ty::Adt(adt_def, _) => {
debug!("print-type-size t: `{:?}` process adt", layout.ty);
let adt_kind = adt_def.adt_kind();
let adt_packed = adt_def.repr().pack.is_some();
let (variant_infos, opt_discr_size) = variant_info_for_adt(cx, layout, adt_def);
record(adt_kind.into(), adt_packed, opt_discr_size, variant_infos);
}
ty::Coroutine(def_id, args) => {
debug!("print-type-size t: `{:?}` record coroutine", layout.ty);
// Coroutines always have a begin/poisoned/end state with additional suspend points
let (variant_infos, opt_discr_size) =
variant_info_for_coroutine(cx, layout, def_id, args);
record(DataTypeKind::Coroutine, false, opt_discr_size, variant_infos);
}
ty::Closure(..) => {
debug!("print-type-size t: `{:?}` record closure", layout.ty);
record(DataTypeKind::Closure, false, None, vec![]);
}
_ => {
debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
}
};
}
fn variant_info_for_adt<'tcx>(
cx: &LayoutCx<'tcx>,
layout: TyAndLayout<'tcx>,
adt_def: AdtDef<'tcx>,
) -> (Vec<VariantInfo>, Option<Size>) {
let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
let mut min_size = Size::ZERO;
let field_info: Vec<_> = flds
.iter()
.enumerate()
.map(|(i, &name)| {
let field_layout = layout.field(cx, i);
let offset = layout.fields.offset(i);
min_size = min_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::AdtField,
name,
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
type_name: None,
}
})
.collect();
VariantInfo {
name: n,
kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
align: layout.align.abi.bytes(),
size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
fields: field_info,
}
};
match layout.variants {
Variants::Empty => (vec![], None),
Variants::Single { index } => {
debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
let variant_def = &adt_def.variant(index);
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
(vec![build_variant_info(Some(variant_def.name), &fields, layout)], None)
}
Variants::Multiple { tag, ref tag_encoding, .. } => {
debug!(
"print-type-size `{:#?}` adt general variants def {}",
layout.ty,
adt_def.variants().len()
);
let variant_infos: Vec<_> = adt_def
.variants()
.iter_enumerated()
.map(|(i, variant_def)| {
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
})
.collect();
(
variant_infos,
match tag_encoding {
TagEncoding::Direct => Some(tag.size(cx)),
_ => None,
},
)
}
}
}
fn variant_info_for_coroutine<'tcx>(
cx: &LayoutCx<'tcx>,
layout: TyAndLayout<'tcx>,
def_id: DefId,
args: ty::GenericArgsRef<'tcx>,
) -> (Vec<VariantInfo>, Option<Size>) {
use itertools::Itertools;
let Variants::Multiple { tag, ref tag_encoding, tag_field, .. } = layout.variants else {
return (vec![], None);
};
let coroutine = cx.tcx().coroutine_layout(def_id, args.as_coroutine().kind_ty()).unwrap();
let upvar_names = cx.tcx().closure_saved_names_of_captured_variables(def_id);
let mut upvars_size = Size::ZERO;
let upvar_fields: Vec<_> = args
.as_coroutine()
.upvar_tys()
.iter()
.zip_eq(upvar_names)
.enumerate()
.map(|(field_idx, (_, name))| {
let field_layout = layout.field(cx, field_idx);
let offset = layout.fields.offset(field_idx);
upvars_size = upvars_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::Upvar,
name: *name,
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
type_name: None,
}
})
.collect();
let mut variant_infos: Vec<_> = coroutine
.variant_fields
.iter_enumerated()
.map(|(variant_idx, variant_def)| {
let variant_layout = layout.for_variant(cx, variant_idx);
let mut variant_size = Size::ZERO;
let fields = variant_def
.iter()
.enumerate()
.map(|(field_idx, local)| {
let field_name = coroutine.field_names[*local];
let field_layout = variant_layout.field(cx, field_idx);
let offset = variant_layout.fields.offset(field_idx);
// The struct is as large as the last field's end
variant_size = variant_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::CoroutineLocal,
name: field_name.unwrap_or(Symbol::intern(&format!(
".coroutine_field{}",
local.as_usize()
))),
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
// Include the type name if there is no field name, or if the name is the
// __awaitee placeholder symbol which means a child future being `.await`ed.
type_name: (field_name.is_none() || field_name == Some(sym::__awaitee))
.then(|| Symbol::intern(&field_layout.ty.to_string())),
}
})
.chain(upvar_fields.iter().copied())
.collect();
// If the variant has no state-specific fields, then it's the size of the upvars.
if variant_size == Size::ZERO {
variant_size = upvars_size;
}
// This `if` deserves some explanation.
//
// The layout code has a choice of where to place the discriminant of this coroutine.
// If the discriminant of the coroutine is placed early in the layout (before the
// variant's own fields), then it'll implicitly be counted towards the size of the
// variant, since we use the maximum offset to calculate size.
// (side-note: I know this is a bit problematic given upvars placement, etc).
//
// This is important, since the layout printing code always subtracts this discriminant
// size from the variant size if the struct is "enum"-like, so failing to account for it
// will either lead to numerical underflow, or an underreported variant size...
//
// However, if the discriminant is placed past the end of the variant, then we need
// to factor in the size of the discriminant manually. This really should be refactored
// better, but this "works" for now.
if layout.fields.offset(tag_field) >= variant_size {
variant_size += match tag_encoding {
TagEncoding::Direct => tag.size(cx),
_ => Size::ZERO,
};
}
VariantInfo {
name: Some(Symbol::intern(&ty::CoroutineArgs::variant_name(variant_idx))),
kind: SizeKind::Exact,
size: variant_size.bytes(),
align: variant_layout.align.abi.bytes(),
fields,
}
})
.collect();
// The first three variants are hardcoded to be `UNRESUMED`, `RETURNED` and `POISONED`.
// We will move the `RETURNED` and `POISONED` elements to the end so we
// are left with a sorting order according to the coroutines yield points:
// First `Unresumed`, then the `SuspendN` followed by `Returned` and `Panicked` (POISONED).
let end_states = variant_infos.drain(1..=2);
let end_states: Vec<_> = end_states.collect();
variant_infos.extend(end_states);
(
variant_infos,
match tag_encoding {
TagEncoding::Direct => Some(tag.size(cx)),
_ => None,
},
)
}