-
Notifications
You must be signed in to change notification settings - Fork 261
/
Copy pathtest_sub_sol.py
58 lines (45 loc) · 1.77 KB
/
test_sub_sol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
Tests the usage of sub solutions found in heuristics with copyLargeNeighborhoodSearch()
"""
import pytest
from pyscipopt import Model, Heur, SCIP_HEURTIMING, SCIP_RESULT
class MyHeur(Heur):
def __init__(self, model: Model, fix_vars, fix_vals):
super().__init__()
self.original_model = model
self.used = False
self.fix_vars = fix_vars
self.fix_vals = fix_vals
def heurexec(self, heurtiming, nodeinfeasible):
self.used = True
# fix z to 2 and optimize the remaining problem
m2 = self.original_model.copyLargeNeighborhoodSearch(self.fix_vars, self.fix_vals)
m2.optimize()
# translate the solution to the original problem
sub_sol = m2.getBestSol()
sol_translation = self.original_model.translateSubSol(m2, sub_sol, self)
accepted = self.original_model.trySol(sol_translation)
assert accepted
m2.freeProb()
return {"result": SCIP_RESULT.FOUNDSOL}
def test_sub_sol():
m = Model("sub_sol_test")
x = m.addVar(name="x", lb=0, ub=3, obj=1)
y = m.addVar(name="y", lb=0, ub=3, obj=2)
z = m.addVar(name="z", lb=0, ub=3, obj=3)
m.addCons(4 <= x + y + z)
# include the heuristic
my_heur = MyHeur(m, fix_vars= [z], fix_vals = [2])
m.includeHeur(my_heur, "name", "description", "Y", timingmask=SCIP_HEURTIMING.BEFOREPRESOL, usessubscip=True)
#optimize
m.optimize()
# assert the heuristic did run
assert my_heur.used
heur_sol = [2, 0, 2]
opt_sol = [3, 1, 0]
found_solutions = []
for sol in m.getSols():
found_solutions.append([sol[x], sol[y], sol[z]])
# both the sub_solution and the real optimum should be in the solution pool
assert heur_sol in found_solutions
assert opt_sol in found_solutions