-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPollard_Rho_kangaroo_with_Python2.7_demo.py
207 lines (190 loc) · 6.19 KB
/
Pollard_Rho_kangaroo_with_Python2.7_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# python 2.7 !
import time
import random
import gmpy2
# windows https://code.google.com/archive/p/gmpy/downloads
modulo = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
order = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
PG = Point(Gx,Gy)
Z = Point(0,0) # zero-point, infinite in real x,y - plane
# return (g, x, y) a*x + b*y = gcd(x, y)
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, x, y = egcd(b % a, a)
return (g, y - (b // a) * x, x)
def rev(b, n = modulo):
while b < 0:
b += modulo
g, x, _ = egcd(b, n)
if g == 1:
return x % n
def mul2(P, p = modulo):
R = Point()
c = 3*P.x*P.x*rev(2*P.y, p) % p
R.x = (c*c-2*P.x) % p
R.y = (c*(P.x - R.x)-P.y) % p
return R
def add(P, Q, p = modulo):
R = Point()
dx = Q.x - P.x
dy = Q.y - P.y
c = dy * gmpy2.invert(dx, p) % p
#c = dy * rev(dx, p) % p
R.x = (c*c - P.x - Q.x) % p
R.y = (c*(P.x - R.x) - P.y) % p
return R # 6 sub, 3 mul, 1 inv
def mulk(k, P = PG, p = modulo):
if k == 0: return Z
elif k == 1: return P
elif (k % 2 == 0):
return mulk(k/2, mul2(P, p), p)
else:
return add(P, mulk( (k-1)/2, mul2(P, p), p), p)
def X2Y(X, p = modulo):
if p % 4 != 3:
print 'prime must be 3 modulo 4'
return 0
X = (X**3+7)%p
pw = (p + 1) / 4
Y = 1
for w in range(256):
if (pw >> w) & 1 == 1:
tmp = X
for k in range(w):
tmp = (tmp**2)%p
Y *= tmp
Y %= p
return Y
def comparator():
A, Ak, B, Bk = [], [], [], []
with open('tame.txt') as f:
for line in f:
L = line.split()
a = int(L[0],16)
b = int(L[1])
A.append(a)
Ak.append(b)
with open('wild.txt') as f:
for line in f:
L = line.split()
a = int(L[0],16)
b = int(L[1])
B.append(a)
Bk.append(b)
result = list(set(A) & set(B))
if len(result) > 0:
sol_kt = A.index(result[0])
sol_kw = B.index(result[0])
print 'total time: %.2f sec' % (time.time()-starttime)
d = Ak[sol_kt] - Bk[sol_kw]
print 'SOLVED:', d
file = open("results.txt",'a')
file.write(('%d'%(Ak[sol_kt] - Bk[sol_kw])) + "\n")
file.write("---------------\n")
file.close()
return True
else:
return False
def check(P, Pindex, DP_rarity, file2save):
if P.x % (DP_rarity) == 0:
file = open(file2save,'a')
file.write(('%064x %d'%(P.x,Pindex)) + "\n")
file.close()
return comparator()
else:
return False
P = [PG]
for k in range(255): P.append(mul2(P[k]))
print 'P-table prepared'
def search():
global solved
DP_rarity = 1 << ((problem - 2*kangoo_power)/2 - 2)
hop_modulo = ((problem-1) / 2) + kangoo_power
T, t, dt = [], [], []
W, w, dw = [], [], []
for k in range(Nt):
t.append((3 << (problem - 2)) + random.randint(1, (1 << (problem - 1))))#-(1 << (problem - 2)) )
T.append(mulk(t[k]))
dt.append(0)
for k in range(Nw):
w.append(random.randint(1, (1 << (problem - 1))))
W.append(add(W0,mulk(w[k])))
dw.append(0)
print 'tame and wild herds are prepared'
oldtime = time.time()
starttime = oldtime
Hops, Hops_old = 0, 0
t0 = time.time()
oldtime = time.time()
starttime = oldtime
while (1):
for k in range(Nt):
Hops += 1
pw = T[k].x % hop_modulo
dt[k] = 1 << pw
solved = check(T[k], t[k], DP_rarity, "tame.txt")
if solved: break
t[k] += dt[k]
T[k] = add(P[pw], T[k])
if solved: break
for k in range(Nw):
Hops += 1
pw = W[k].x % hop_modulo
dw[k] = 1 << pw
solved = check(W[k], w[k], DP_rarity, "wild.txt")
if solved: break
w[k] += dw[k]
W[k] = add(P[pw], W[k])
if solved: break
t1 = time.time()
if (t1-t0) > 5:
print '%.3f h/s'%((Hops-Hops_old)/(t1-t0))
t0 = t1
Hops_old = Hops
hops_list.append(Hops)
print 'Hops:', Hops
return 'sol. time: %.2f sec' % (time.time()-starttime)
problems = [\
('029d8c5d35231d75eb87fd2c5f05f65281ed9573dc41853288c62ee94eb2590b7a',16),\
('036ea839d22847ee1dce3bfc5b11f6cf785b0682db58c35b63d1342eb221c3490c',24),\
('0209c58240e50e3ba3f833c82655e8725c037a2294e14cf5d73a5df8d56159de69',32),\
('03a2efa402fd5268400c77c20e574ba86409ededee7c4020e4b9f0edbee53de0d4',40),\
('025e466e97ed0e7910d3d90ceb0332df48ddf67d456b9e7303b50a3d89de357336',44),\
('026ecabd2d22fdb737be21975ce9a694e108eb94f3649c586cc7461c8abf5da71a',45),\
('03f46f41027bbf44fafd6b059091b900dad41e6845b2241dc3254c7cdd3c5a16c6',50),\
('0230210c23b1a047bc9bdbb13448e67deddc108946de6de639bcc75d47c0216b1b',65),\
('03bcf7ce887ffca5e62c9cabbdb7ffa71dc183c52c04ff4ee5ee82e0c55c39d77b',105)]
problem = 32
for elem in problems:
s, n = elem
if problem == n: break
kangoo_power = 3
Nt = Nw = 2**kangoo_power
X = int(s, 16)
Y = X2Y(X % (2**256))
if Y % 2 != (X >> 256) % 2: Y = modulo - Y
X = X % (2**256)
W0 = Point(X,Y)
starttime = oldtime = time.time()
search_range = 2**(problem-1)
Hops = 0
random.seed()
hops_list = []
N_tests = 3
for k in range(N_tests):
solved = False
open("tame.txt",'w').close()
open("wild.txt",'w').close()
search()
M = sum(hops_list)*1.0 / len(hops_list)
D = sum((xi - M) ** 2 for xi in hops_list)*1.0 / len(hops_list)
print M, '+/-', (D / (len(hops_list)-1))**0.5
print 'Average time to solve: %.2f sec' % ((time.time()-starttime)/N_tests)