-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
36 lines (28 loc) · 881 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import yaml
from data_fetcher import DataFetcher
from model import LSTMModel
import utils
def load_config():
with open('config.yml', 'r') as config_file:
return yaml.safe_load(config_file)
def main():
# Load configuration
config = load_config()
# Initialize data fetcher
data_fetcher = DataFetcher(
exchange=config['exchange'],
symbol=config['symbol'],
timeframe=config['timeframe']
)
# Fetch and preprocess data
data = data_fetcher.fetch_data()
X, y = utils.prepare_data(data, look_back=config['look_back'])
# Initialize and train model
model = LSTMModel(look_back=config['look_back'])
model.train(X, y)
# Make predictions
predictions = model.predict(X[-1:])
# Print results
print(f"Predicted volume for next period: {predictions[0][0]}")
if __name__ == "__main__":
main()