-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
408 lines (315 loc) · 12.1 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import argparse
import csv
import functools
import json
import logging
import logging.config
import os
import pathlib
import queue
import sys
import github
import github.GithubObject
import pandas as pd
import sqlitedict
import urllib3
import yaml
sys.setrecursionlimit(1_000_000)
logger = logging.getLogger(__name__)
DATE = pd.Timestamp(2021, 11, 17)
with open(pathlib.Path.home() / "tokens.yaml") as file:
tokens = yaml.safe_load(file)
tokens_queue = queue.Queue()
for token in tokens:
tokens_queue.put(token)
@property
def raw_data(self):
return self._rawData
github.GithubObject.GithubObject.data = raw_data
def initialize(directory=None):
if directory is None:
directory = get_path("data")
directory = pathlib.Path(__file__).parent / directory
directory.mkdir(parents=True, exist_ok=True)
os.chdir(directory)
def get_logger(name, level="INFO", modules=None):
name = pathlib.Path(name).stem
logging.config.dictConfig(
{
"version": 1,
"formatters": {
"file": {
"format": "{asctime}\t{levelname}\t{name}\t{message}",
"datefmt": "%Y-%m-%d %H:%M:%S",
"style": "{",
},
"stream": {
"()": "colorlog.ColoredFormatter",
"format": "{blue}{asctime}\t{name}\t{message_log_color}{message}",
"datefmt": "%Y-%m-%d %H:%M:%S",
"style": "{",
"secondary_log_colors": {
"message": {
"DEBUG": "cyan",
"INFO": "green",
"WARNING": "yellow",
"ERROR": "red",
"CRITICAL": "bold_red",
}
},
},
},
"handlers": {
"file": {
"class": "logging.FileHandler",
"formatter": "file",
"filename": f"{name}.log",
},
"stream": {
"class": "colorlog.StreamHandler",
"formatter": "stream",
},
},
"root": {
"level": level,
"handlers": ["file", "stream"],
},
"disable_existing_loggers": False,
}
)
if modules is not None:
for module, level in modules.items():
logging.getLogger(module).setLevel(level)
return logging.getLogger(name)
def connect_github(token=None, done=False):
if done:
tokens_queue.put(token)
else:
if token is not None:
tokens_queue.put(token)
while True:
try:
token = tokens_queue.get()
client = github.Github(
token,
timeout=20,
per_page=100,
retry=urllib3.util.retry.Retry(
total=None, status=10, status_forcelist=[500, 502, 503, 504], backoff_factor=1
),
)
remaining, limit = client.rate_limiting
if limit < 5000:
raise github.BadCredentialsException(401, f"Token {token} is blocked", headers=None)
except github.BadCredentialsException:
logger.warning(f"Token {token} is not valid")
except github.RateLimitExceededException:
tokens_queue.put(token)
except Exception as exception:
logger.error(f"Token {token} is not working due to {exception}")
tokens_queue.put(token)
else:
if remaining > tokens[token]:
break
else:
tokens_queue.put(token)
return token, client
def lookup_keys(attributes, json):
if not isinstance(attributes, list):
attributes = [attributes]
for attribute in attributes:
if (
value := functools.reduce(
lambda dictionary, key: dictionary.get(key) if dictionary else None, attribute.split("."), json
)
) not in [None, ""]:
return value
def get_path(file, project=None):
if project is not None:
project = project.replace("/", "_").lower()
directory = f"{project}/"
files = {
# Working directory
"data": "data/",
# Generated in extract_projects.py
"usage": "usage.csv",
"projects_extracted": "projects_extracted.csv",
# Generated in fetch_projects.py
"projects_fetched": "projects_fetched.csv",
# Generated after selecting projects
"projects": "projects.csv",
# Generated in collect_data.py
"directory": directory,
"checkpoint": directory + f"{project}_checkpoint.db",
"pulls_raw": directory + f"{project}_pulls.db",
"timelines_raw": directory + f"{project}_timelines.db",
"commits": directory + f"{project}_commits.db",
"patches_raw": directory + f"{project}_patches.db",
"metadata": directory + f"{project}.db",
# Generated in preprocess_data.py
"timelines_fixed": directory + f"{project}_timelines_fixed.db",
"timelines": directory + f"{project}_timelines.csv",
"pulls": directory + f"{project}_pulls.csv",
"patches": directory + f"{project}_patches.csv",
# Generated in process_data.py
"dataframe": directory + f"{project}_dataframe.csv",
# Generated in postprocess_data.py
"statistics": "statistics.csv",
"dataset": directory + f"{project}_dataset.csv",
# Generated in measure_features.py
"features": directory + f"{project}_features.csv",
# Generated in measure_indicators.py
"features_fixed": directory + f"{project}_features_fixed.csv",
"activity": directory + f"{project}_activity.csv",
"indicators": directory + f"{project}_indicators.csv",
}
return pathlib.Path(files[file])
def force_refresh():
parser = argparse.ArgumentParser()
parser.add_argument("-y", action="store_true", help="force fresh start")
parser.add_argument("-n", action="store_true", help="do not force fresh start")
if (args := parser.parse_args()).y:
return True
elif args.n:
return False
def cleanup_files(files, fresh=None, project=None):
if not isinstance(files, list):
files = [files]
files = [get_path(file, project) for file in files]
if (exist := any([file.exists() for file in files])) and fresh is None:
message = "Do you want to force fresh start? [y/n] "
if project is not None:
message = f"{project}: {message}"
while True:
if (fresh := input(message).lower()) in ["y", "n"]:
fresh = True if fresh == "y" else False
break
if fresh:
for file in files:
file.unlink(missing_ok=True)
return True if fresh or not exist else False
def check_files(files, project, exclude=None):
if not isinstance(files, list):
files = [files]
if exclude is None:
exclude = []
elif not isinstance(exclude, list):
exclude = [exclude]
return all([get_path(file, project).exists() for file in files]) and not any(
[get_path(file, project).exists() for file in exclude]
)
def open_database(file):
def encode(data):
return json.dumps(data, ensure_ascii=False, separators=(",", ":"))
def decode(data):
return json.loads(data)
return sqlitedict.SqliteDict(file, tablename="data", autocommit=True, encode=encode, decode=decode)
def convert_dtypes(function):
def wrapper(*args, **kwargs):
dataframe = function(*args, **kwargs)
for column in dataframe.filter(regex="^time|_at$"):
dataframe[column] = pd.to_datetime(dataframe[column]).dt.tz_localize(None)
dataframe = dataframe.convert_dtypes()
for column in dataframe.select_dtypes("string"):
if dataframe[column].nunique() < dataframe[column].count():
dataframe[column] = dataframe[column].astype("category")
return dataframe
return wrapper
def import_events(file):
return pd.read_json(file, lines=True)
@convert_dtypes
def import_usage():
return pd.read_csv(get_path("usage"), index_col="date", low_memory=False)
@convert_dtypes
def import_projects_extracted():
return pd.read_csv(get_path("projects_extracted"), index_col="id", low_memory=False)
@convert_dtypes
def import_projects_fetched():
return pd.read_csv(get_path("projects_fetched"), index_col="id", low_memory=False)
@convert_dtypes
def import_projects():
return pd.read_csv(get_path("projects"), index_col="project", low_memory=False)
def open_checkpoint(project):
return open_database(get_path("checkpoint", project))
def open_pulls_raw(project):
return open_database(get_path("pulls_raw", project))
def open_timelines_raw(project):
return open_database(get_path("timelines_raw", project))
def open_commits(project):
return open_database(get_path("commits", project))
def open_patches_raw(project):
return open_database(get_path("patches_raw", project))
def open_metadata(project):
return open_database(get_path("metadata", project))
def open_timelines_fixed(project):
return open_database(get_path("timelines_fixed", project))
@convert_dtypes
def import_timelines(project):
return pd.read_csv(
get_path("timelines", project),
index_col=["pull_number", "event_number"],
quoting=csv.QUOTE_ALL,
escapechar="\\",
low_memory=False,
)
@convert_dtypes
def import_pulls(project):
return pd.read_csv(
get_path("pulls", project), index_col="number", quoting=csv.QUOTE_ALL, escapechar="\\", low_memory=False
)
@convert_dtypes
def import_patches(project):
return pd.read_csv(
get_path("patches", project), index_col=["pull_number", "sha"], quoting=csv.QUOTE_ALL, low_memory=False
)
@convert_dtypes
def import_dataframe(project):
return pd.read_csv(get_path("dataframe", project), index_col=["pull_number", "event_number"], low_memory=False)
@convert_dtypes
def import_statistics():
return pd.read_csv(get_path("statistics"), index_col="project", low_memory=False)
@convert_dtypes
def import_dataset(project):
return pd.read_csv(get_path("dataset", project), index_col=["pull_number", "event_number"], low_memory=False)
@convert_dtypes
def import_features(project):
return pd.read_csv(get_path("features", project), index_col=["pull_number"], low_memory=False)
@convert_dtypes
def import_features_fixed(project):
return pd.read_csv(get_path("features_fixed", project), index_col=["pull_number"], low_memory=False)
@convert_dtypes
def import_activity(project):
return pd.read_csv(get_path("activity", project), index_col="month", low_memory=False)
@convert_dtypes
def import_indicators(project):
return pd.read_csv(get_path("indicators", project), index_col="time", low_memory=False)
def tofetch():
return import_projects_extracted().index
def tocollect():
return import_projects_fetched()["project"].dropna()
def selected():
return import_projects().index
def collected():
return [
project
for project in tocollect()
if check_files(
["pulls_raw", "timelines_raw", "commits", "patches_raw", "metadata"], project, exclude="checkpoint"
)
]
def toanalyze():
return selected().intersection(collected())
def preprocessed():
return [
project
for project in toanalyze()
if check_files(["timelines", "pulls", "patches"], project, exclude="timelines_fixed")
]
def processed():
return [project for project in preprocessed() if check_files("dataframe", project)]
def postprocessed():
return [project for project in processed() if check_files("dataset", project)]
def measured():
return [project for project in postprocessed() if check_files("features", project)]
def indicated():
return [project for project in measured() if check_files(["features_fixed", "activity", "indicators"], project)]