-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_fragments_n_view.py
326 lines (271 loc) · 11.8 KB
/
create_fragments_n_view.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
__copyright__ = """
SLAMcore Limited
All Rights Reserved.
(C) Copyright 2024
NOTICE:
All information contained herein is, and remains the property of SLAMcore
Limited and its suppliers, if any. The intellectual and technical concepts
contained herein are proprietary to SLAMcore Limited and its suppliers and
may be covered by patents in process, and are protected by trade secret or
copyright law.
"""
__license__ = "CC BY-NC-SA 3.0"
import os
import imageio
import numpy as np
from tqdm import tqdm
from dataio.utils import nyu40_to_scannet20
from config import get_scannet_root
"""
This is the script used to create multi-view frames for scannet scenes
"""
def create_fragment_for_one_scene_batched(scannet_dir, scene, save_dir, n_views, max_move=80, skip=20, step=1, filter=True):
"""
create sub-sequences for batched inference, i.e. take the middle view as reference view and put it to the first
:param scannet_dir:
:param scene:
:param save_dir:
:param n_views:
:param max_move:
:param skip:
:param step:
:param filter:
:return:
"""
label_dir = os.path.join(scannet_dir, scene, "label-240")
pose_dir = os.path.join(scannet_dir, scene, "pose")
n_frames = len(os.listdir(pose_dir))
# step 1: get valid frames
valid_frame_ids = []
for frame_id in range(0, n_frames, skip):
c2w = np.loadtxt(os.path.join(pose_dir, "{}.txt".format(frame_id)))
if np.isnan(c2w).any() or np.isinf(c2w).any():
continue
if skip == 20 and filter:
if not os.path.exists(os.path.join(label_dir, "{}.png".format(frame_id))):
continue
label = np.array(imageio.imread(os.path.join(label_dir, "{}.png".format(frame_id))))
h, w = label.shape
N = h * w
label = nyu40_to_scannet20(label)
num_labelled_1 = np.count_nonzero(label > 0)
label[label > 20] = 0
num_labelled_2 = np.count_nonzero(label > 0)
# print(num_labelled_1, num_labelled_2, num_labelled_2 / N)
if (num_labelled_2 / N) < 0.1:
continue
valid_frame_ids.append(frame_id)
# [N,]
valid_frame_ids = np.asarray(valid_frame_ids)
fragments = []
# ref_view must cover as many images as possible
for ref_view in valid_frame_ids[::step]:
# let i be ref-view and find n nearest views
dist = np.abs(valid_frame_ids - ref_view)
nn_views_id = np.argsort(dist)[1:n_views]
candidates = [ref_view]
for nn_id in nn_views_id:
if dist[nn_id] <= max_move:
candidates.append(valid_frame_ids[nn_id])
if len(candidates) == n_views:
fragments.append(candidates)
else:
n_sample = n_views - len(candidates)
ids = list(np.random.randint(len(candidates), size=n_sample))
sampled_views = [candidates[i] for i in ids]
fragments.append(candidates + sampled_views)
with open(os.path.join(save_dir, "{}.txt".format(scene)), "w") as f:
for fragment in fragments:
things_to_write = ""
for i, view in enumerate(fragment):
things_to_write += "{}".format(view)
if i < n_views - 1:
things_to_write += " "
else:
things_to_write += "\n"
f.write(things_to_write)
def create_fragments_batched(scannet_root, save_files_root, filter=False, n_views=3, step=1, skip=20):
# TODO: hard-coded
scene_files = ["configs/scannetv2_train.txt", "configs/scannetv2_val.txt"]
suffix = "filtered" if filter else "all"
save_files_dir = os.path.join(save_files_root, "skip_{}/{}_views_step_{}/{}".format(skip, n_views, step, suffix))
os.makedirs(save_files_dir, exist_ok=True)
all_scenes_list = []
for scene_file in scene_files:
with open(scene_file, "r") as f:
scenes = f.readlines()
for scene in scenes:
scene = scene.strip() # remove \n
all_scenes_list.append(scene)
for scene in tqdm(all_scenes_list):
print("Processing {}".format(scene))
create_fragment_for_one_scene_batched(scannet_root, scene, save_files_dir, n_views, max_move=80, skip=skip, step=step, filter=filter)
def create_fragment_for_one_scene_causal(scannet_dir, scene, save_dir, n_views, max_move=80, skip=20, step=1, filter=True):
"""
create sub-sequences for causal inference, i.e. take the last view as reference view and put it to the first
:param scannet_dir:
:param scene:
:param save_dir:
:param n_views:
:param max_move:
:param skip:
:param step:
:param filter:
:return:
"""
label_dir = os.path.join(scannet_dir, scene, "label-240")
pose_dir = os.path.join(scannet_dir, scene, "pose")
n_frames = len(os.listdir(pose_dir))
# step 1: get valid frames
valid_frame_ids = []
for frame_id in range(0, n_frames, skip):
c2w = np.loadtxt(os.path.join(pose_dir, "{}.txt".format(frame_id)))
if np.isnan(c2w).any() or np.isinf(c2w).any():
continue
if skip == 20 and filter:
if not os.path.exists(os.path.join(label_dir, "{}.png".format(frame_id))):
continue
label = np.array(imageio.imread(os.path.join(label_dir, "{}.png".format(frame_id))))
h, w = label.shape
N = h * w
label = nyu40_to_scannet20(label)
num_labelled_1 = np.count_nonzero(label > 0)
label[label > 20] = 0
num_labelled_2 = np.count_nonzero(label > 0)
# print(num_labelled_1, num_labelled_2, num_labelled_2 / N)
if (num_labelled_2 / N) < 0.1:
continue
valid_frame_ids.append(frame_id)
# [N,]
valid_frame_ids = np.asarray(valid_frame_ids)
fragments = []
for ref_view in valid_frame_ids[::step]:
# let i be ref-view and find n nearest views
dist = valid_frame_ids - ref_view
# set frame_ids after ref_id to have very large dist, s.t. smaller ids always appear in first n views
dist[dist > 0] = 1000000
dist = np.abs(dist)
nn_views_id = np.argsort(dist)[1:n_views]
candidates = [ref_view]
for nn_id in nn_views_id:
if dist[nn_id] <= max_move:
candidates.append(valid_frame_ids[nn_id])
if len(candidates) == n_views:
fragments.append(candidates)
else:
n_sample = n_views - len(candidates)
if len(candidates) == 1:
sampled_views = [ref_view] * n_sample
else:
# shouldn't re-sample the reference view
ids = list(np.random.randint(1, len(candidates), size=n_sample))
sampled_views = [candidates[i] for i in ids]
fragments.append(candidates + sampled_views)
with open(os.path.join(save_dir, "{}.txt".format(scene)), "w") as f:
for fragment in fragments:
things_to_write = ""
for i, view in enumerate(fragment):
things_to_write += "{}".format(view)
if i < n_views - 1:
things_to_write += " "
else:
things_to_write += "\n"
f.write(things_to_write)
def create_fragments_causal(scannet_root, save_files_root, filter=False, n_views=3, step=1, skip=20):
scene_files = ["configs/scannetv2_train.txt", "configs/scannetv2_val.txt"]
suffix = "causal"
save_files_dir = os.path.join(save_files_root, "skip_{}/{}_views_step_{}/{}".format(skip, n_views, step, suffix))
os.makedirs(save_files_dir, exist_ok=True)
all_scenes_list = []
for scene_file in scene_files:
with open(scene_file, "r") as f:
scenes = f.readlines()
for scene in scenes:
scene = scene.strip() # remove \n
all_scenes_list.append(scene)
for scene in tqdm(all_scenes_list):
print("Processing {}".format(scene))
create_fragment_for_one_scene_causal(scannet_root, scene, save_files_dir, n_views, max_move=80, skip=skip, step=step, filter=filter)
def create_valid_frame_list(scannet_dir, scene, save_dir, skip=20, filter=True):
"""
create sub-sequences for batched inference, i.e. take the middle view as reference view and put it to the first
:param scannet_dir:
:param scene:
:param save_dir:
:param skip:
:param filter:
:return:
"""
label_dir = os.path.join(scannet_dir, scene, "label-240")
pose_dir = os.path.join(scannet_dir, scene, "pose")
n_frames = len(os.listdir(pose_dir))
# step 1: get valid frames
valid_frame_ids = []
for frame_id in range(0, n_frames, skip):
c2w = np.loadtxt(os.path.join(pose_dir, "{}.txt".format(frame_id)))
if np.isnan(c2w).any() or np.isinf(c2w).any():
continue
if skip == 20 and filter:
if not os.path.exists(os.path.join(label_dir, "{}.png".format(frame_id))):
continue
label = np.array(imageio.imread(os.path.join(label_dir, "{}.png".format(frame_id))))
h, w = label.shape
N = h * w
label = nyu40_to_scannet20(label)
num_labelled_1 = np.count_nonzero(label > 0)
label[label > 20] = 0
num_labelled_2 = np.count_nonzero(label > 0)
# print(num_labelled_1, num_labelled_2, num_labelled_2 / N)
if (num_labelled_2 / N) < 0.1:
continue
valid_frame_ids.append(frame_id)
# [N,]
valid_frame_ids = np.asarray(valid_frame_ids)
with open(os.path.join(save_dir, "{}.txt".format(scene)), "w") as f:
for frame_id in valid_frame_ids:
things_to_write = "{}\n".format(frame_id)
f.write(things_to_write)
return len(valid_frame_ids)
def create_valid_frames_lists(scannet_root, save_files_root, filter=False, skip=20):
scene_files = ["configs/scannetv2_train.txt", "configs/scannetv2_val.txt"]
suffix = "valid_frames"
save_files_dir = os.path.join(save_file_root), "skip_{}/{}".format(skip, suffix)
os.makedirs(save_files_dir, exist_ok=True)
all_scenes_list = []
for scene_file in scene_files:
with open(scene_file, "r") as f:
scenes = f.readlines()
for scene in scenes:
scene = scene.strip() # remove \n
all_scenes_list.append(scene)
for scene in tqdm(all_scenes_list):
print("Processing {}".format(scene))
create_valid_frame_list(scannet_root, scene, save_files_dir, skip=skip, filter=filter)
def create_all_frame_list(scannet_dir, scene, save_dir, skip=20):
"""
create frame list for all frames with skip interval
:param scannet_dir:
:param scene:
:param save_dir:
:return:
"""
pose_dir = os.path.join(scannet_dir, scene, "pose")
n_frames = len(os.listdir(pose_dir))
# step 1: get valid frames
frame_ids = list(range(0, n_frames, skip))
with open(os.path.join(save_dir, "{}.txt".format(scene)), "w") as f:
for frame_id in frame_ids:
things_to_write = "{}\n".format(frame_id)
f.write(things_to_write)
return len(frame_ids)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--scannet_root", required=True)
parser.add_argument("--save_files_root", type=str, default="./image_pairs/multiview")
args = parser.parse_args()
scannet_root = args.scannet_root
save_file_root = args.save_files_root
create_fragments_batched(scannet_root, save_file_root, filter=False, n_views=3, step=1, skip=20)
create_fragments_causal(scannet_root, save_file_root, filter=False, n_views=3, step=1, skip=20)
create_valid_frames_lists(scannet_root, save_file_root, filter=False, skip=20)