forked from MarlinFirmware/Marlin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtft_fsmc.cpp
197 lines (166 loc) · 7.06 KB
/
tft_fsmc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../platforms.h"
#ifdef HAL_STM32
#include "../../../inc/MarlinConfig.h"
#if HAS_FSMC_TFT
#include "tft_fsmc.h"
#include "pinconfig.h"
SRAM_HandleTypeDef TFT_FSMC::SRAMx;
DMA_HandleTypeDef TFT_FSMC::DMAtx;
LCD_CONTROLLER_TypeDef *TFT_FSMC::LCD;
void TFT_FSMC::init() {
uint32_t controllerAddress;
FMC_OR_FSMC(NORSRAM_TimingTypeDef) timing, extTiming;
uint32_t nsBank = (uint32_t)pinmap_peripheral(digitalPinToPinName(TFT_CS_PIN), pinMap_FSMC_CS);
// Perform the SRAM1 memory initialization sequence
SRAMx.Instance = FMC_OR_FSMC(NORSRAM_DEVICE);
SRAMx.Extended = FMC_OR_FSMC(NORSRAM_EXTENDED_DEVICE);
// SRAMx.Init
SRAMx.Init.NSBank = nsBank;
SRAMx.Init.DataAddressMux = FMC_OR_FSMC(DATA_ADDRESS_MUX_DISABLE);
SRAMx.Init.MemoryType = FMC_OR_FSMC(MEMORY_TYPE_SRAM);
#ifdef STM32F446xx
SRAMx.Init.MemoryDataWidth = TERN(TFT_INTERFACE_FMC_8BIT, FMC_NORSRAM_MEM_BUS_WIDTH_8, FMC_NORSRAM_MEM_BUS_WIDTH_16);
#else
SRAMx.Init.MemoryDataWidth = TERN(TFT_INTERFACE_FSMC_8BIT, FSMC_NORSRAM_MEM_BUS_WIDTH_8, FSMC_NORSRAM_MEM_BUS_WIDTH_16);
#endif
SRAMx.Init.BurstAccessMode = FMC_OR_FSMC(BURST_ACCESS_MODE_DISABLE);
SRAMx.Init.WaitSignalPolarity = FMC_OR_FSMC(WAIT_SIGNAL_POLARITY_LOW);
SRAMx.Init.WrapMode = FMC_OR_FSMC(WRAP_MODE_DISABLE);
SRAMx.Init.WaitSignalActive = FMC_OR_FSMC(WAIT_TIMING_BEFORE_WS);
SRAMx.Init.WriteOperation = FMC_OR_FSMC(WRITE_OPERATION_ENABLE);
SRAMx.Init.WaitSignal = FMC_OR_FSMC(WAIT_SIGNAL_DISABLE);
SRAMx.Init.ExtendedMode = FMC_OR_FSMC(EXTENDED_MODE_ENABLE);
SRAMx.Init.AsynchronousWait = FMC_OR_FSMC(ASYNCHRONOUS_WAIT_DISABLE);
SRAMx.Init.WriteBurst = FMC_OR_FSMC(WRITE_BURST_DISABLE);
#if defined(STM32F446xx) || defined(STM32F4xx)
SRAMx.Init.PageSize = FMC_OR_FSMC(PAGE_SIZE_NONE);
#endif
// Read Timing - relatively slow to ensure ID information is correctly read from TFT controller
// Can be decreased from 15-15-24 to 4-4-8 with risk of stability loss
timing.AddressSetupTime = 15;
timing.AddressHoldTime = 15;
timing.DataSetupTime = 24;
timing.BusTurnAroundDuration = 0;
timing.CLKDivision = 16;
timing.DataLatency = 17;
timing.AccessMode = FMC_OR_FSMC(ACCESS_MODE_A);
// Write Timing
// Can be decreased from 8-15-8 to 0-0-1 with risk of stability loss
extTiming.AddressSetupTime = 8;
extTiming.AddressHoldTime = 15;
extTiming.DataSetupTime = 8;
extTiming.BusTurnAroundDuration = 0;
extTiming.CLKDivision = 16;
extTiming.DataLatency = 17;
extTiming.AccessMode = FMC_OR_FSMC(ACCESS_MODE_A);
#ifdef STM32F446xx
__HAL_RCC_FMC_CLK_ENABLE();
#else
__HAL_RCC_FSMC_CLK_ENABLE();
#endif
for (uint16_t i = 0; pinMap_FSMC[i].pin != NC; i++)
pinmap_pinout(pinMap_FSMC[i].pin, pinMap_FSMC);
pinmap_pinout(digitalPinToPinName(TFT_CS_PIN), pinMap_FSMC_CS);
pinmap_pinout(digitalPinToPinName(TFT_RS_PIN), pinMap_FSMC_RS);
controllerAddress = FSMC_BANK1_1;
#ifdef PF0
switch (nsBank) {
case FMC_OR_FSMC(NORSRAM_BANK2): controllerAddress = FSMC_BANK1_2; break;
case FMC_OR_FSMC(NORSRAM_BANK3): controllerAddress = FSMC_BANK1_3; break;
case FMC_OR_FSMC(NORSRAM_BANK4): controllerAddress = FSMC_BANK1_4; break;
}
#endif
controllerAddress |= (uint32_t)pinmap_peripheral(digitalPinToPinName(TFT_RS_PIN), pinMap_FSMC_RS);
HAL_SRAM_Init(&SRAMx, &timing, &extTiming);
__HAL_RCC_DMA2_CLK_ENABLE();
#ifdef STM32F1xx
DMAtx.Instance = DMA2_Channel1;
#elif defined(STM32F4xx)
DMAtx.Instance = DMA2_Stream0;
DMAtx.Init.Channel = DMA_CHANNEL_0;
DMAtx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
DMAtx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
DMAtx.Init.MemBurst = DMA_MBURST_SINGLE;
DMAtx.Init.PeriphBurst = DMA_PBURST_SINGLE;
#endif
DMAtx.Init.Direction = DMA_MEMORY_TO_MEMORY;
DMAtx.Init.MemInc = DMA_MINC_DISABLE;
DMAtx.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
DMAtx.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
DMAtx.Init.Mode = DMA_NORMAL;
DMAtx.Init.Priority = DMA_PRIORITY_HIGH;
LCD = (LCD_CONTROLLER_TypeDef *)controllerAddress;
}
uint32_t TFT_FSMC::getID() {
writeReg(0);
uint32_t id = LCD->RAM;
if (id == 0) id = readID(LCD_READ_ID);
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) id = readID(LCD_READ_ID4);
return id;
}
uint32_t TFT_FSMC::readID(tft_data_t inReg) {
writeReg(inReg);
uint32_t id = LCD->RAM; // dummy read
id = inReg << 24;
id |= (LCD->RAM & 0x00FF) << 16;
id |= (LCD->RAM & 0x00FF) << 8;
id |= (LCD->RAM & 0x00FF);
return id;
}
bool TFT_FSMC::isBusy() {
#ifdef STM32F1xx
#define __IS_DMA_ENABLED(__HANDLE__) ((__HANDLE__)->Instance->CCR & DMA_CCR_EN)
#define __IS_DMA_CONFIGURED(__HANDLE__) ((__HANDLE__)->Instance->CPAR != 0)
#elif defined(STM32F4xx)
#define __IS_DMA_ENABLED(__HANDLE__) ((__HANDLE__)->Instance->CR & DMA_SxCR_EN)
#define __IS_DMA_CONFIGURED(__HANDLE__) ((__HANDLE__)->Instance->PAR != 0)
#endif
#ifdef __IS_DMA_CONFIGURED
if (!__IS_DMA_CONFIGURED(&DMAtx)) return false;
#endif
// Check if DMA transfer error or transfer complete flags are set
if ((__HAL_DMA_GET_FLAG(&DMAtx, __HAL_DMA_GET_TE_FLAG_INDEX(&DMAtx)) == 0) && (__HAL_DMA_GET_FLAG(&DMAtx, __HAL_DMA_GET_TC_FLAG_INDEX(&DMAtx)) == 0)) return true;
__DSB();
abort();
return false;
}
void TFT_FSMC::abort() {
HAL_DMA_Abort(&DMAtx); // Abort DMA transfer if any
HAL_DMA_DeInit(&DMAtx); // Deconfigure DMA
}
void TFT_FSMC::transmitDMA(uint32_t memoryIncrease, uint16_t *data, uint16_t count) {
DMAtx.Init.PeriphInc = memoryIncrease;
HAL_DMA_Init(&DMAtx);
HAL_DMA_Start(&DMAtx, (uint32_t)data, (uint32_t)&(LCD->RAM), count);
}
void TFT_FSMC::transmit(uint32_t memoryIncrease, uint16_t *data, uint16_t count) {
DMAtx.Init.PeriphInc = memoryIncrease;
HAL_DMA_Init(&DMAtx);
dataTransferBegin();
HAL_DMA_Start(&DMAtx, (uint32_t)data, (uint32_t)&(LCD->RAM), count);
HAL_DMA_PollForTransfer(&DMAtx, HAL_DMA_FULL_TRANSFER, HAL_MAX_DELAY);
abort();
}
#endif // HAS_FSMC_TFT
#endif // HAL_STM32