forked from nicknochnack/PyTorchin15
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorchnn.py
63 lines (52 loc) · 1.78 KB
/
torchnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Import dependencies
import torch
from PIL import Image
from torch import nn, save, load
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Get data
train = datasets.MNIST(root="data", download=True, train=True, transform=ToTensor())
dataset = DataLoader(train, 32)
#1,28,28 - classes 0-9
# Image Classifier Neural Network
class ImageClassifier(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(1, 32, (3,3)),
nn.ReLU(),
nn.Conv2d(32, 64, (3,3)),
nn.ReLU(),
nn.Conv2d(64, 64, (3,3)),
nn.ReLU(),
nn.Flatten(),
nn.Linear(64*(28-6)*(28-6), 10)
)
def forward(self, x):
return self.model(x)
# Instance of the neural network, loss, optimizer
clf = ImageClassifier().to('cuda')
opt = Adam(clf.parameters(), lr=1e-3)
loss_fn = nn.CrossEntropyLoss()
# Training flow
if __name__ == "__main__":
for epoch in range(10): # train for 10 epochs
for batch in dataset:
X,y = batch
X, y = X.to('cuda'), y.to('cuda')
yhat = clf(X)
loss = loss_fn(yhat, y)
# Apply backprop
opt.zero_grad()
loss.backward()
opt.step()
print(f"Epoch:{epoch} loss is {loss.item()}")
with open('model_state.pt', 'wb') as f:
save(clf.state_dict(), f)
with open('model_state.pt', 'rb') as f:
clf.load_state_dict(load(f))
img = Image.open('img_3.jpg')
img_tensor = ToTensor()(img).unsqueeze(0).to('cuda')
print(torch.argmax(clf(img_tensor)))