-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathDESCRIPTION
114 lines (114 loc) · 4 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Package: SimInf
Title: A Framework for Data-Driven Stochastic Disease Spread Simulations
Version: 9.8.1.9000
Authors@R: c(person("Stefan", "Widgren", role = c("aut", "cre"),
email = "stefan.widgren@gmail.com",
comment = c(ORCID = "0000-0001-5745-2284")),
person("Robin", "Eriksson", role = "aut",
comment = c(ORCID = "0000-0002-4291-712X")),
person("Stefan", "Engblom", role = "aut",
comment = c(ORCID = "0000-0002-3614-1732")),
person("Pavol", "Bauer", role = "aut",
comment = c(ORCID = "0000-0003-4328-7171")),
person("Thomas", "Rosendal", role = "ctb",
comment = c(ORCID = "0000-0002-6576-9668")),
person("Ivana", "Rodriguez Ewerlöf", role = "ctb",
comment = c(ORCID = "0000-0002-9678-9813")),
person("Attractive Chaos", role = "cph",
comment = "Author of 'kvec.h'."))
Description: Provides an efficient and very flexible framework to
conduct data-driven epidemiological modeling in realistic large
scale disease spread simulations. The framework integrates
infection dynamics in subpopulations as continuous-time Markov
chains using the Gillespie stochastic simulation algorithm and
incorporates available data such as births, deaths and movements
as scheduled events at predefined time-points. Using C code for
the numerical solvers and 'OpenMP' (if available) to divide work
over multiple processors ensures high performance when simulating
a sample outcome. One of our design goals was to make the package
extendable and enable usage of the numerical solvers from other R
extension packages in order to facilitate complex epidemiological
research. The package contains template models and can be extended
with user-defined models. For more details see the paper by
Widgren, Bauer, Eriksson and Engblom (2019)
<doi:10.18637/jss.v091.i12>. The package also provides
functionality to fit models to time series data using the
Approximate Bayesian Computation Sequential Monte Carlo
('ABC-SMC') algorithm of Toni and others (2009)
<doi:10.1098/rsif.2008.0172>.
Acknowledgements: This software has been made possible by support from
the Swedish Research Council within the UPMARC Linnaeus center of
Excellence (Pavol Bauer, Robin Eriksson, and Stefan Engblom), the
Swedish Research Council Formas (Stefan Engblom and Stefan
Widgren), the Swedish Board of Agriculture (Stefan Widgren), the
Swedish strategic research program eSSENCE (Stefan Widgren), and
in the framework of the Full Force project, supported by funding
from the European Union’s Horizon 2020 Research and Innovation
programme under grant agreement No 773830: One Health European
Joint Programme (Stefan Widgren).
License: GPL-3
URL: https://github.com/stewid/SimInf, http://stewid.github.io/SimInf/
BugReports: https://github.com/stewid/SimInf/issues
Type: Package
LazyData: true
Biarch: true
NeedsCompilation: yes
SystemRequirements: GNU Scientific Library (GSL)
Depends: R (>= 4.0)
Imports:
digest,
graphics,
grDevices,
MASS,
methods,
mvtnorm,
stats,
utils,
Matrix (>= 1.3-0)
Suggests:
knitr,
rmarkdown
Collate:
'C-generator.R'
'check_arguments.R'
'init.R'
'valid.R'
'classes.R'
'SimInf_model.R'
'SEIR.R'
'SIR.R'
'SIS.R'
'SISe.R'
'SISe3.R'
'SISe3_sp.R'
'SISe_sp.R'
'SimInf-package.R'
'SimInf.R'
'SimInf_events.R'
'SimInf_indiv_events.R'
'run.R'
'density_ratio.R'
'abc.R'
'degree.R'
'distance.R'
'distributions.R'
'edge_properties.R'
'match_compartments.R'
'mparse.R'
'pmcmc.R'
'pfilter.R'
'n.R'
'openmp.R'
'package_skeleton.R'
'plot.R'
'prevalence.R'
'print.R'
'punchcard.R'
'trajectory.R'
'u0.R'
'v0.R'
Encoding: UTF-8
RoxygenNote: 7.3.2
VignetteBuilder:
utils,
knitr