forked from MarlinFirmware/Marlin
-
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathstepper.h
682 lines (581 loc) · 25.1 KB
/
stepper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Derived from Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../inc/MarlinConfig.h"
#include "planner.h"
#include "stepper/indirection.h"
#ifdef __AVR__
#include "stepper/speed_lookuptable.h"
#endif
#if ENABLED(FT_MOTION)
#include "ft_types.h"
#endif
// TODO: Review and ensure proper handling for special E axes with commands like M17/M18, stepper timeout, etc.
#if ENABLED(MIXING_EXTRUDER)
#define E_STATES EXTRUDERS // All steppers are set together for each mixer. (Currently limited to 1.)
#elif HAS_SWITCHING_EXTRUDER
#define E_STATES E_STEPPERS // One stepper for every two EXTRUDERS. The last extruder can be non-switching.
#elif HAS_PRUSA_MMU2
#define E_STATES E_STEPPERS // One E stepper shared with all EXTRUDERS, so setting any only sets one.
#else
#define E_STATES E_STEPPERS // One stepper for each extruder, so each can be disabled individually.
#endif
// Number of axes that could be enabled/disabled. Dual/multiple steppers are combined.
#define ENABLE_COUNT (NUM_AXES + E_STATES)
typedef bits_t(ENABLE_COUNT) ena_mask_t;
// Axis flags type, for enabled state or other simple state
typedef struct {
union {
ena_mask_t bits;
struct {
#if NUM_AXES
bool NUM_AXIS_LIST(X:1, Y:1, Z:1, I:1, J:1, K:1, U:1, V:1, W:1);
#endif
#if E_STATES
bool LIST_N(E_STATES, E0:1, E1:1, E2:1, E3:1, E4:1, E5:1, E6:1, E7:1);
#endif
};
};
} stepper_flags_t;
typedef bits_t(NUM_AXES + E_STATES) e_axis_bits_t;
constexpr e_axis_bits_t e_axis_mask = (_BV(E_STATES) - 1) << NUM_AXES;
// All the stepper enable pins
constexpr pin_t ena_pins[] = {
NUM_AXIS_LIST_(X_ENABLE_PIN, Y_ENABLE_PIN, Z_ENABLE_PIN, I_ENABLE_PIN, J_ENABLE_PIN, K_ENABLE_PIN, U_ENABLE_PIN, V_ENABLE_PIN, W_ENABLE_PIN)
LIST_N(E_STEPPERS, E0_ENABLE_PIN, E1_ENABLE_PIN, E2_ENABLE_PIN, E3_ENABLE_PIN, E4_ENABLE_PIN, E5_ENABLE_PIN, E6_ENABLE_PIN, E7_ENABLE_PIN)
};
// Index of the axis or extruder element in a combined array
constexpr uint8_t index_of_axis(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
return uint8_t(axis) + (E_TERN0(axis < NUM_AXES ? 0 : eindex));
}
//#define __IAX_N(N,V...) _IAX_##N(V)
//#define _IAX_N(N,V...) __IAX_N(N,V)
//#define _IAX_1(A) index_of_axis(A)
//#define _IAX_2(A,B) index_of_axis(A E_OPTARG(B))
//#define INDEX_OF_AXIS(V...) _IAX_N(TWO_ARGS(V),V)
#define INDEX_OF_AXIS(A,V...) index_of_axis(A E_OPTARG(V+0))
// Bit mask for a matching enable pin, or 0
constexpr ena_mask_t ena_same(const uint8_t a, const uint8_t b) {
return ena_pins[a] == ena_pins[b] ? _BV(b) : 0;
}
// Recursively get the enable overlaps mask for a given linear axis or extruder
constexpr ena_mask_t ena_overlap(const uint8_t a=0, const uint8_t b=0) {
return b >= ENABLE_COUNT ? 0 : (a == b ? 0 : ena_same(a, b)) | ena_overlap(a, b + 1);
}
// Recursively get whether there's any overlap at all
constexpr bool any_enable_overlap(const uint8_t a=0) {
return a >= ENABLE_COUNT ? false : ena_overlap(a) || any_enable_overlap(a + 1);
}
// Array of axes that overlap with each
// TODO: Consider cases where >=2 steppers are used by a linear axis or extruder
// (e.g., CoreXY, Dual XYZ, or E with multiple steppers, etc.).
constexpr ena_mask_t enable_overlap[] = {
#define _OVERLAP(N) ena_overlap(INDEX_OF_AXIS(AxisEnum(N))),
REPEAT(NUM_AXES, _OVERLAP)
#if HAS_EXTRUDERS
#define _E_OVERLAP(N) ena_overlap(INDEX_OF_AXIS(E_AXIS, N)),
REPEAT(E_STEPPERS, _E_OVERLAP)
#endif
};
//static_assert(!any_enable_overlap(), "There is some overlap.");
#if HAS_ZV_SHAPING
#ifdef SHAPING_MAX_STEPRATE
constexpr float max_step_rate = SHAPING_MAX_STEPRATE;
#else
constexpr float _ISDASU[] = DEFAULT_AXIS_STEPS_PER_UNIT;
constexpr feedRate_t _ISDMF[] = DEFAULT_MAX_FEEDRATE;
constexpr float max_shaped_rate = TERN0(INPUT_SHAPING_X, _ISDMF[X_AXIS] * _ISDASU[X_AXIS]) +
TERN0(INPUT_SHAPING_Y, _ISDMF[Y_AXIS] * _ISDASU[Y_AXIS]);
#if defined(__AVR__) || !defined(ADAPTIVE_STEP_SMOOTHING)
// MIN_STEP_ISR_FREQUENCY is known at compile time on AVRs and any reduction in SRAM is welcome
template<int INDEX=DISTINCT_AXES> constexpr float max_isr_rate() {
return _MAX(_ISDMF[INDEX - 1] * _ISDASU[INDEX - 1], max_isr_rate<INDEX - 1>());
}
template<> constexpr float max_isr_rate<0>() {
return TERN0(ADAPTIVE_STEP_SMOOTHING, MIN_STEP_ISR_FREQUENCY);
}
constexpr float max_step_rate = _MIN(max_isr_rate(), max_shaped_rate);
#else
constexpr float max_step_rate = max_shaped_rate;
#endif
#endif
#ifndef SHAPING_MIN_FREQ
#define SHAPING_MIN_FREQ _MIN(0x7FFFFFFFL OPTARG(INPUT_SHAPING_X, SHAPING_FREQ_X) OPTARG(INPUT_SHAPING_Y, SHAPING_FREQ_Y))
#endif
constexpr uint16_t shaping_min_freq = SHAPING_MIN_FREQ,
shaping_echoes = max_step_rate / shaping_min_freq / 2 + 3;
typedef hal_timer_t shaping_time_t;
enum shaping_echo_t { ECHO_NONE = 0, ECHO_FWD = 1, ECHO_BWD = 2 };
struct shaping_echo_axis_t {
TERN_(INPUT_SHAPING_X, shaping_echo_t x:2);
TERN_(INPUT_SHAPING_Y, shaping_echo_t y:2);
};
class ShapingQueue {
private:
static shaping_time_t now;
static shaping_time_t times[shaping_echoes];
static shaping_echo_axis_t echo_axes[shaping_echoes];
static uint16_t tail;
#if ENABLED(INPUT_SHAPING_X)
static shaping_time_t delay_x; // = shaping_time_t(-1) to disable queueing
static shaping_time_t peek_x_val;
static uint16_t head_x;
static uint16_t _free_count_x;
#endif
#if ENABLED(INPUT_SHAPING_Y)
static shaping_time_t delay_y; // = shaping_time_t(-1) to disable queueing
static shaping_time_t peek_y_val;
static uint16_t head_y;
static uint16_t _free_count_y;
#endif
public:
static void decrement_delays(const shaping_time_t interval) {
now += interval;
TERN_(INPUT_SHAPING_X, if (peek_x_val != shaping_time_t(-1)) peek_x_val -= interval);
TERN_(INPUT_SHAPING_Y, if (peek_y_val != shaping_time_t(-1)) peek_y_val -= interval);
}
static void set_delay(const AxisEnum axis, const shaping_time_t delay) {
TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) delay_x = delay);
TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) delay_y = delay);
}
static void enqueue(const bool x_step, const bool x_forward, const bool y_step, const bool y_forward) {
#if ENABLED(INPUT_SHAPING_X)
if (x_step) {
if (head_x == tail) peek_x_val = delay_x;
echo_axes[tail].x = x_forward ? ECHO_FWD : ECHO_BWD;
_free_count_x--;
}
else {
echo_axes[tail].x = ECHO_NONE;
if (head_x != tail)
_free_count_x--;
else if (++head_x == shaping_echoes)
head_x = 0;
}
#endif
#if ENABLED(INPUT_SHAPING_Y)
if (y_step) {
if (head_y == tail) peek_y_val = delay_y;
echo_axes[tail].y = y_forward ? ECHO_FWD : ECHO_BWD;
_free_count_y--;
}
else {
echo_axes[tail].y = ECHO_NONE;
if (head_y != tail)
_free_count_y--;
else if (++head_y == shaping_echoes)
head_y = 0;
}
#endif
times[tail] = now;
if (++tail == shaping_echoes) tail = 0;
}
#if ENABLED(INPUT_SHAPING_X)
static shaping_time_t peek_x() { return peek_x_val; }
static bool dequeue_x() {
bool forward = echo_axes[head_x].x == ECHO_FWD;
do {
_free_count_x++;
if (++head_x == shaping_echoes) head_x = 0;
} while (head_x != tail && echo_axes[head_x].x == ECHO_NONE);
peek_x_val = head_x == tail ? shaping_time_t(-1) : times[head_x] + delay_x - now;
return forward;
}
static bool empty_x() { return head_x == tail; }
static uint16_t free_count_x() { return _free_count_x; }
#endif
#if ENABLED(INPUT_SHAPING_Y)
static shaping_time_t peek_y() { return peek_y_val; }
static bool dequeue_y() {
bool forward = echo_axes[head_y].y == ECHO_FWD;
do {
_free_count_y++;
if (++head_y == shaping_echoes) head_y = 0;
} while (head_y != tail && echo_axes[head_y].y == ECHO_NONE);
peek_y_val = head_y == tail ? shaping_time_t(-1) : times[head_y] + delay_y - now;
return forward;
}
static bool empty_y() { return head_y == tail; }
static uint16_t free_count_y() { return _free_count_y; }
#endif
static void purge() {
const auto st = shaping_time_t(-1);
#if ENABLED(INPUT_SHAPING_X)
head_x = tail; _free_count_x = shaping_echoes - 1; peek_x_val = st;
#endif
#if ENABLED(INPUT_SHAPING_Y)
head_y = tail; _free_count_y = shaping_echoes - 1; peek_y_val = st;
#endif
}
};
struct ShapeParams {
float frequency;
float zeta;
bool enabled : 1;
bool forward : 1;
int16_t delta_error = 0; // delta_error for seconday bresenham mod 128
uint8_t factor1;
uint8_t factor2;
int32_t last_block_end_pos = 0;
};
#endif // HAS_ZV_SHAPING
//
// Stepper class definition
//
class Stepper {
friend class Max7219;
friend class FxdTiCtrl;
friend void stepperTask(void *);
public:
#if ANY(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
static bool separate_multi_axis;
#endif
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
#ifndef MOTOR_CURRENT_PWM_FREQUENCY
#define MOTOR_CURRENT_PWM_FREQUENCY 31400
#endif
#define MOTOR_CURRENT_COUNT 3
#elif HAS_MOTOR_CURRENT_SPI
static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT;
#define MOTOR_CURRENT_COUNT COUNT(Stepper::digipot_count)
#endif
static bool initialized;
static uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
#endif
// Last-moved extruder, as set when the last movement was fetched from planner
#if HAS_MULTI_EXTRUDER
static uint8_t last_moved_extruder;
#else
static constexpr uint8_t last_moved_extruder = 0;
#endif
#if ENABLED(FREEZE_FEATURE)
static bool frozen; // Set this flag to instantly freeze motion
#endif
private:
static block_t* current_block; // A pointer to the block currently being traced
static AxisBits last_direction_bits, // The next stepping-bits to be output
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
static bool abort_current_block; // Signals to the stepper that current block should be aborted
#if ENABLED(X_DUAL_ENDSTOPS)
static bool locked_X_motor, locked_X2_motor;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
static bool locked_Y_motor, locked_Y2_motor;
#endif
#if ANY(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
static bool locked_Z_motor, locked_Z2_motor
#if NUM_Z_STEPPERS >= 3
, locked_Z3_motor
#if NUM_Z_STEPPERS >= 4
, locked_Z4_motor
#endif
#endif
;
#endif
static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
#if MULTISTEPPING_LIMIT == 1
static constexpr uint8_t steps_per_isr = 1; // Count of steps to perform per Stepper ISR call
#else
static uint8_t steps_per_isr;
#endif
#if DISABLED(OLD_ADAPTIVE_MULTISTEPPING)
static hal_timer_t time_spent_in_isr, time_spent_out_isr;
#endif
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
#else
static constexpr uint8_t oversampling_factor = 0;
#endif
// Delta error variables for the Bresenham line tracer
static xyze_long_t delta_error;
static xyze_long_t advance_dividend;
static uint32_t advance_divisor,
step_events_completed, // The number of step events executed in the current block
accelerate_until, // The point from where we need to stop acceleration
decelerate_after, // The point from where we need to start decelerating
step_event_count; // The total event count for the current block
#if ANY(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
static uint8_t stepper_extruder;
#else
static constexpr uint8_t stepper_extruder = 0;
#endif
#if ENABLED(S_CURVE_ACCELERATION)
static int32_t bezier_A, // A coefficient in Bézier speed curve
bezier_B, // B coefficient in Bézier speed curve
bezier_C; // C coefficient in Bézier speed curve
static uint32_t bezier_F, // F coefficient in Bézier speed curve
bezier_AV; // AV coefficient in Bézier speed curve
#ifdef __AVR__
static bool A_negative; // If A coefficient was negative
#endif
static bool bezier_2nd_half; // If Bézier curve has been initialized or not
#endif
#if HAS_ZV_SHAPING
#if ENABLED(INPUT_SHAPING_X)
static ShapeParams shaping_x;
#endif
#if ENABLED(INPUT_SHAPING_Y)
static ShapeParams shaping_y;
#endif
#endif
#if ENABLED(LIN_ADVANCE)
static constexpr hal_timer_t LA_ADV_NEVER = HAL_TIMER_TYPE_MAX;
static hal_timer_t nextAdvanceISR,
la_interval; // Interval between ISR calls for LA
static int32_t la_delta_error, // Analogue of delta_error.e for E steps in LA ISR
la_dividend, // Analogue of advance_dividend.e for E steps in LA ISR
la_advance_steps; // Count of steps added to increase nozzle pressure
static bool la_active; // Whether linear advance is used on the present segment.
#endif
#if ENABLED(BABYSTEPPING)
static constexpr hal_timer_t BABYSTEP_NEVER = HAL_TIMER_TYPE_MAX;
static hal_timer_t nextBabystepISR;
#endif
#if ENABLED(DIRECT_STEPPING)
static page_step_state_t page_step_state;
#endif
static hal_timer_t ticks_nominal;
#if DISABLED(S_CURVE_ACCELERATION)
static uint32_t acc_step_rate; // needed for deceleration start point
#endif
// Exact steps at which an endstop was triggered
static xyz_long_t endstops_trigsteps;
// Positions of stepper motors, in step units
static xyze_long_t count_position;
// Current stepper motor directions (+1 or -1)
static xyze_int8_t count_direction;
public:
// Initialize stepper hardware
static void init();
// Interrupt Service Routine and phases
// The stepper subsystem goes to sleep when it runs out of things to execute.
// Call this to notify the subsystem that it is time to go to work.
static void wake_up() { ENABLE_STEPPER_DRIVER_INTERRUPT(); }
static bool is_awake() { return STEPPER_ISR_ENABLED(); }
static bool suspend() {
const bool awake = is_awake();
if (awake) DISABLE_STEPPER_DRIVER_INTERRUPT();
return awake;
}
// The ISR scheduler
static void isr();
// The stepper pulse ISR phase
static void pulse_phase_isr();
// The stepper block processing ISR phase
static hal_timer_t block_phase_isr();
#if HAS_ZV_SHAPING
static void shaping_isr();
#endif
#if ENABLED(LIN_ADVANCE)
// The Linear advance ISR phase
static void advance_isr();
#endif
#if ENABLED(BABYSTEPPING)
// The Babystepping ISR phase
static hal_timer_t babystepping_isr();
FORCE_INLINE static void initiateBabystepping() {
if (nextBabystepISR == BABYSTEP_NEVER) {
nextBabystepISR = 0;
wake_up();
}
}
#endif
// Check if the given block is busy or not - Must not be called from ISR contexts
static bool is_block_busy(const block_t * const block);
#if HAS_ZV_SHAPING
// Check whether the stepper is processing any input shaping echoes
static bool input_shaping_busy() {
const bool was_on = hal.isr_state();
hal.isr_off();
const bool result = TERN0(INPUT_SHAPING_X, !ShapingQueue::empty_x()) || TERN0(INPUT_SHAPING_Y, !ShapingQueue::empty_y());
if (was_on) hal.isr_on();
return result;
}
#endif
// Get the position of a stepper, in steps
static int32_t position(const AxisEnum axis);
// Set the current position in steps
static void set_position(const xyze_long_t &spos);
static void set_axis_position(const AxisEnum a, const int32_t &v);
// Report the positions of the steppers, in steps
static void report_a_position(const xyz_long_t &pos);
static void report_positions();
// Discard current block and free any resources
FORCE_INLINE static void discard_current_block() {
#if ENABLED(DIRECT_STEPPING)
if (current_block->is_page()) page_manager.free_page(current_block->page_idx);
#endif
current_block = nullptr;
axis_did_move = 0;
planner.release_current_block();
TERN_(LIN_ADVANCE, la_interval = nextAdvanceISR = LA_ADV_NEVER);
}
// Quickly stop all steppers
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
// The direction of a single motor. A true result indicates forward or positive motion.
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return last_direction_bits[axis]; }
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return axis_did_move[axis]; }
// Handle a triggered endstop
static void endstop_triggered(const AxisEnum axis);
// Triggered position of an axis in steps
static int32_t triggered_position(const AxisEnum axis);
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
static void set_digipot_value_spi(const int16_t address, const int16_t value);
static void set_digipot_current(const uint8_t driver, const int16_t current);
#endif
#if HAS_MICROSTEPS
static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3);
static void microstep_mode(const uint8_t driver, const uint8_t stepping);
static void microstep_readings();
#endif
#if ANY(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
FORCE_INLINE static void set_separate_multi_axis(const bool state) { separate_multi_axis = state; }
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
#endif
#if ANY(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
FORCE_INLINE static void set_z1_lock(const bool state) { locked_Z_motor = state; }
FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
#if NUM_Z_STEPPERS >= 3
FORCE_INLINE static void set_z3_lock(const bool state) { locked_Z3_motor = state; }
#if NUM_Z_STEPPERS >= 4
FORCE_INLINE static void set_z4_lock(const bool state) { locked_Z4_motor = state; }
#endif
#endif
static void set_all_z_lock(const bool lock, const int8_t except=-1) {
set_z1_lock(lock ^ (except == 0));
set_z2_lock(lock ^ (except == 1));
#if NUM_Z_STEPPERS >= 3
set_z3_lock(lock ^ (except == 2));
#if NUM_Z_STEPPERS >= 4
set_z4_lock(lock ^ (except == 3));
#endif
#endif
}
#endif
#if ENABLED(BABYSTEPPING)
static void do_babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
#if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power();
#endif
static stepper_flags_t axis_enabled; // Axis stepper(s) ENABLED states
static bool axis_is_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
return TEST(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
}
static void mark_axis_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
SBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
}
static void mark_axis_disabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
CBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
}
static bool can_axis_disable(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
return !any_enable_overlap() || !(axis_enabled.bits & enable_overlap[INDEX_OF_AXIS(axis, eindex)]);
}
static void enable_axis(const AxisEnum axis);
static bool disable_axis(const AxisEnum axis);
#if HAS_EXTRUDERS
static void enable_extruder(E_TERN_(const uint8_t eindex=0));
static bool disable_extruder(E_TERN_(const uint8_t eindex=0));
static void enable_e_steppers();
static void disable_e_steppers();
#else
static void enable_extruder() {}
static bool disable_extruder() { return true; }
static void enable_e_steppers() {}
static void disable_e_steppers() {}
#endif
#define ENABLE_EXTRUDER(N) enable_extruder(E_TERN_(N))
#define DISABLE_EXTRUDER(N) disable_extruder(E_TERN_(N))
#define AXIS_IS_ENABLED(N,V...) axis_is_enabled(N E_OPTARG(#V))
static void enable_all_steppers();
static void disable_all_steppers();
// Update direction states for all steppers
static void apply_directions();
// Set direction bits and update all stepper DIR states
static void set_directions(const AxisBits bits) {
last_direction_bits = bits;
apply_directions();
}
#if ENABLED(FT_MOTION)
// Manage the planner
static void fxdTiCtrl_BlockQueueUpdate();
#endif
#if HAS_ZV_SHAPING
static void set_shaping_damping_ratio(const AxisEnum axis, const_float_t zeta);
static float get_shaping_damping_ratio(const AxisEnum axis);
static void set_shaping_frequency(const AxisEnum axis, const_float_t freq);
static float get_shaping_frequency(const AxisEnum axis);
#endif
private:
// Set the current position in steps
static void _set_position(const abce_long_t &spos);
// Calculate the timing interval for the given step rate
static hal_timer_t calc_timer_interval(uint32_t step_rate);
// Calculate timing interval and steps-per-ISR for the given step rate
static hal_timer_t calc_multistep_timer_interval(uint32_t step_rate);
#if ENABLED(S_CURVE_ACCELERATION)
static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
static int32_t _eval_bezier_curve(const uint32_t curr_step);
#endif
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
static void digipot_init();
#endif
#if HAS_MICROSTEPS
static void microstep_init();
#endif
#if ENABLED(FT_MOTION)
static void fxdTiCtrl_stepper(const bool applyDir, const ft_command_t command);
static void fxdTiCtrl_refreshAxisDidMove();
#endif
};
extern Stepper stepper;