-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
110 lines (83 loc) · 3.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# -*- coding: utf-8 -*-
__author__ = 'Douglas Uba'
__email__ = 'douglas.uba@inpe.br'
import time
from matplotlib.patches import CirclePolygon
import numpy as np
from osgeo import gdal, ogr, osr
# Define KM_PER_DEGREE
KM_PER_DEGREE = 40075.16/360.0
# Setup projection and geo-transformation
LatLonWGS84 = osr.SpatialReference()
LatLonWGS84.ImportFromEPSG(4326)
def km2degree(km):
return km / KM_PER_DEGREE
def getGeoT(extent, nlines, ncols):
resx = (extent[2] - extent[0]) / ncols
resy = (extent[3] - extent[1]) / nlines
return [extent[0], resx, 0, extent[3] , 0, -resy]
def create_circle(lon, lat, radius, resolution=64):
# Build circle
circle = CirclePolygon((lon, lat), radius, resolution, facecolor='b')
# Get coordinates
path = circle.get_path()
transform = circle.get_transform()
path = transform.transform_path(path)
# Create ring
ring = ogr.Geometry(ogr.wkbLinearRing)
for v in path.vertices:
ring.AddPoint(v[0], v[1])
# Create polygon (from OGR API)
p = ogr.Geometry(ogr.wkbPolygon)
p.AddGeometry(ring)
return p
def create_random_circles(extent, min, max, n):
# Build random centers and radius
x = np.random.uniform(low=extent[0], high=extent[2], size=n)
y = np.random.uniform(low=extent[1], high=extent[3], size=n)
radius = np.random.uniform(low=km2degree(min), high=km2degree(max), size=n)
# Create set of circles
circles = []
for x, y, r in zip(x, y, radius):
circles.append(create_circle(x, y, r))
return circles
def export2file(path, format, geoms):
# Create output file
driver = ogr.GetDriverByName(format)
datasource = driver.CreateDataSource(path)
# Create spatial layer
layer = datasource.CreateLayer('', LatLonWGS84, ogr.wkbPolygon)
layer.CreateField(ogr.FieldDefn('id', ogr.OFTInteger))
# Generate identifiers
ids = range(0, len(geoms))
# Export each geometry
for c, i in zip(geoms, ids):
# Build feature (id + geom)
f = ogr.Feature(layer.GetLayerDefn())
f.SetField('id', i)
f.SetGeometry(c)
# Add to spatial layer
layer.CreateFeature(f)
def create_image(extent, resolution, path='', driver='MEM'):
# Compute grid dimension
sizex = int(((extent[2] - extent[0]) * KM_PER_DEGREE) / resolution)
sizey = int(((extent[3] - extent[1]) * KM_PER_DEGREE) / resolution)
# Create data
array = np.random.uniform(0.0, 1024.0, size=(sizey, sizex))
# Get memory driver
driver = gdal.GetDriverByName(driver)
# Create grid
grid = driver.Create(path, sizex, sizey, 1, gdal.GDT_Float32)
grid.GetRasterBand(1).SetNoDataValue(0.0)
grid.GetRasterBand(1).Fill(0.0)
# Setup projection and geo-transformation
grid.SetProjection(LatLonWGS84.ExportToWkt())
grid.SetGeoTransform(getGeoT(extent, grid.RasterYSize, grid.RasterXSize))
# Write data
grid.GetRasterBand(1).WriteArray(array)
return grid
class Timer():
def __enter__(self):
self.start = time.time()
def __exit__(self, *args):
print('Time:', time.time() - self.start)