-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathextract_train_fid.py
50 lines (40 loc) · 1.96 KB
/
extract_train_fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import argparse
from tqdm import tqdm
from Dataset.dataloader import get_data
from Metrics.inception_metrics import MultiInceptionMetrics
class SampleAndEval:
def __init__(self, device):
super().__init__()
self.inception_metrics = MultiInceptionMetrics(
device=device, compute_manifold=False, num_classes=1000,
num_inception_chunks=10, manifold_k=3, model="inception",
)
self.device = device
def compute_images_features_and_save(self, dataloader):
bar = tqdm(dataloader, leave=False, desc="Computing images features")
for images, labels in bar:
self.inception_metrics.update(images, image_type="real")
real_features = torch.cat(self.inception_metrics.real_features, dim=0)
real_features_mean = real_features.mean(dim=0)
real_features_cov = self.inception_metrics.cov(real_features, real_features_mean)
data = {
"mu": real_features_mean.cpu(),
"cov": real_features_cov.cpu(),
}
# Save the dictionary to a file
torch.save(data, "./saved_networks/ImageNet_256_train_stats.pt")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-folder", type=str, default="", help="data source")
parser.add_argument("--img-size", type=int, default=256, help="image size")
parser.add_argument("--bsize", type=int, default=128, help="batch size")
parser.add_argument("--num-workers", type=int, default=8, help="batch size")
args = parser.parse_args()
data_loader = get_data(
"imagenet", img_size=args.img_size, data_folder=args.data_folder, bsize=args.bsize,
num_workers=args.num_workers, is_multi_gpus=False, seed=-1
)[0]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sae = SampleAndEval(device)
sae.compute_images_features_and_save(data_loader)