-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk-means-pca.R
163 lines (108 loc) · 3.17 KB
/
k-means-pca.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
library(tidyverse)
library(factoextra)
pca_data
# Indicadores para K óptimo
# Valor de silueta
set.seed(2021)
fviz_nbclust(
pca_data, kmeans, method = "silhouette",
k.max = 15
)
# Valor de suma de cuadrados totales
set.seed(2021)
fviz_nbclust(
pca_data, kmeans, method = "wss",
k.max = 15
)
# NbClust for determining the best number of clusters
library(NbClust)
nb <- NbClust::NbClust(pca_data,
distance = "euclidean",
min.nc = 2, max.nc = 20,
method = "kmeans",
index = "all")
fviz_nbclust(nb)
nb$Best.nc # Valores máximos de cada indicador
# K-means
set.seed(2021)
c3 = kmeans(pca_data, centers = 3, iter.max = 100,
nstart = 100)
c3$cluster
c3$centers
# Silueta por cada cluster
silueta <- cluster::silhouette(c3$cluster, dist(pca_data))
fviz_silhouette(silueta)
#Gráfico de clusters basados en sus centroides
centroides_c3 = data.frame(c3$centers)
centroides_c3$kmeans3 = 1:3
library(reshape)
centroides_km3_2 = reshape::melt(centroides_c3, id=c("kmeans3"))
str(centroides_km3_2)
library(ggplot2)
ggplot(centroides_km3_2, aes(x=kmeans3, y=value, fill=variable))+
geom_bar(stat="identity", position="dodge")
# Variables originales
c3$cluster
fires_cluster <-
fires_pca %>%
mutate(
clust = c3$cluster
)
fires_cluster
fires_cluster$clust
# VARIABLES POR CLUSTER
fires_long3 <- fires_cluster %>% gather(key = variable, value = valor, 1:7)
ggplot(fires_long3, aes(x = as.factor(clust), y = valor)) +
geom_boxplot(aes(fill = variable)) +
geom_jitter(color="red", size = 0.2, alpha=0.2) +
theme_bw() +
labs(
title = "Distribución de variables por mes",
caption = "Elaboración propia") +
facet_wrap(~variable, scales = "free_y",
strip.position = "top") +
theme(legend.position = "left")
library(ggplot2)
g2 = ggplot(fifa3_centr_2, aes(x=kmeans4, y=value, fill=variable))+
geom_bar(stat="identity", position="dodge")
g2
library(plotly)
ggplotly(g2)
# Cluster con PCA
cluster::clusplot(pca_data, c3$cluster, color=T, labels=2)
# * grafico en 3D ----
pc = princomp(fires_pca_esc, cor = T, scores = T)
ls(pc)
head(pc$scores)
class(head(pc$scores))
pca_data
summary(pc)
biplot(pc)
#install.packages('rgl')
library(rgl)
plot3d(pc$scores[, 1:3], col = c4$cluster, size = 10)
rglwidget() # grafico aparece en Viewer
c3_cluster_f = as.factor(c3$cluster) #En factor para graficar con scatter
c3_cluster_f
library(car)
scatter3d(x = pc$scores[,1], y = pc$scores[,2], z = pc$scores[,3],
xlab = "PC1", ylab = "PC2" , zlab = "PC3",
groups = c3_cluster_f, surface=FALSE, ellipsoid= TRUE)
rglwidget() # grafico aparece en Viewer
# Validación
library(clusterSim)
# Indice Davies - Boulding
val <- c3$cluster
index <- index.DB(pca_data, val, centrotypes = "centroids")
index$DB
# Indice de Dunn
library(clValid)
dunn(distance = NULL, Data = pca_data, clusters = val)
fires_cluster
smoothScatter(spatial_data$Y ~ spatial_data$X,
colramp = colorRampPalette(palette),
ylim = c(9, 2))
ggplot(spatial_data, aes(X, Y)) +
geom_point(aes(col = clust),ylim = c(9,1)) +
ylim = 9:1
theme(ylim = 9:1)