-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_UGBA.sh
80 lines (76 loc) · 2.15 KB
/
train_UGBA.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
models=(GCN GraphSage GAT)
# isolate means the Prune+LD defense method
defense_modes=(none prune isolate)
# Cora
for defense_mode in ${defense_modes[@]};
do
for model in ${models[@]};
do
python -u run_adaptive.py \
--prune_thr=0.1\
--dataset=Cora\
--homo_loss_weight=50\
--vs_number=10\
--test_model=${model}\
--defense_mode=${defense_mode}\
--selection_method=cluster_degree\
--homo_boost_thrd=0.5\
--epochs=200\
--trojan_epochs=400
done
done
# # Pubmed
# for defense_mode in ${defense_modes[@]};
# do
# for model in ${models[@]};
# do
# python -u run_adaptive.py \
# --prune_thr=0.2\
# --dataset=Pubmed\
# --homo_loss_weight=100\
# --vs_number=40\
# --test_model=${model}\
# --defense_mode=${defense_mode}\
# --selection_method=cluster_degree\
# --homo_boost_thrd=0.5\
# --epochs=200\
# --trojan_epochs=2000
# done
# done
# # Flickr
# for defense_mode in ${defense_modes[@]};
# do
# for model in ${models[@]};
# do
# python -u run_adaptive.py \
# --prune_thr=0.4\
# --dataset=Flickr\
# --hidden 64 \
# --homo_loss_weight=100\
# --vs_number=80\
# --test_model=${model}\
# --defense_mode=${defense_mode}\
# --selection_method=cluster_degree\
# --homo_boost_thrd=0.8\
# --epochs=200\
# --trojan_epochs=400
# done
# done
# # OGBN-Arixv
# for defense_mode in ${defense_modes[@]};
# do
# for model in ${models[@]};
# do
# python -u run_adaptive.py \
# --prune_thr=0.8\
# --dataset=ogbn-arxiv\
# --homo_loss_weight=200\
# --vs_number=160\
# --test_model=${model}\
# --defense_mode=${defense_mode}\
# --selection_method=cluster_degree\
# --homo_boost_thrd=0.8\
# --epochs=800\
# --trojan_epochs=800
# done
# done