To use the DeepFashion dataset you need to first download it to 'data/' , then follow these steps to re-organize the dataset.
cd data/
mv Category\ and\ Attribute\ Prediction\ Benchmark Attr_Predict
mv In-shop\ Clothes\ Retrieval\ Benchmark In-shop
mv Consumer-to-shop\ Clothes\ Retrieval\ Benchmark Consumer_to_shop
mv Fashion\ Landmark\ Detection\ Benchmark/ Landmark_Detect
python prepare_attr_pred.py
python prepare_in_shop.py
python prepare_consumer_to_shop.py
python prepare_landmark_detect.py
The directory should be like this:
mmfashion
├── mmfashion
├── tools
├── configs
├── data
│ ├── Attr_Predict
│ │ ├── train.txt
│ │ ├── test.txt
│ │ ├── val.txt
│ │ ├── train_attr.txt
│ │ ├── ...
│ │ ├── Img
│ │ │ ├── img
│ │ ├── Eval
│ │ │ ├── ...
│ ├── In-shop
│ │ ├── train.txt
│ │ ├── query.txt
│ │ ├── gallery.txt
│ │ ├── train_labels.txt
│ │ │ ├── ...
The file tree should be like this:
Attr_Predict
├── Anno
│ ├── list_attr_cloth.txt
│ ├── list_attr_img.txt
│ ├── list_bbox.txt
│ ├── list_category_cloth.txt
│ ├── list_category_img.txt
│ └── list_landmarks.txt
├── Eval
│ └── list_eval_partition.txt
└── Img
├── XXX.jpg
└── ...
Then run python prepare_attr_pred.py
to re-organize the dataset.
Please refer to dataset/ATTR_DATASET.md for more info.
We add segmentation annotations for "Fashion Parsing and Segmentation" task. Please download the updated data. The file tree should be like this:
In-shop
├── Anno
│ ├── segmentation
│ | ├── DeepFashion_segmentation_train.json
│ | ├── DeepFashion_segmentation_query.json
│ | ├── DeepFashion_segmentation_gallery.json
│ ├── list_bbox_inshop.txt
│ ├── list_description_inshop.json
│ ├── list_item_inshop.txt
│ └── list_landmarks_inshop.txt
├── Eval
│ └── list_eval_partition.txt
└── Img
├── img
| ├──XXX.jpg
├── img_highres
└── ├──XXX.jpg
Then run python prepare_in_shop.py
to re-organize the dataset.
Please refer to dataset/IN_SHOP_DATASET.md for more info.
The file tree should be like this:
Consumer_to_shop
├── Anno
│ ├── list_attr_cloth.txt
│ ├── list_attr_items.txt
│ ├── list_attr_type.txt
│ ├── list_bbox_consumer2shop.txt
│ ├── list_item_consumer2shop.txt
│ └── list_landmarks_consumer2shop.txt
├── Eval
│ └── list_eval_partition.txt
└── Img
├── XXX.jpg
└── ...
Then run python prepare_consumer_to_shop.py
to re-organize the dataset.
Please refer to dataset/CONSUMER_TO_SHOP_DATASET.md for more info.
The file tree should be like this:
Landmark_Detect
├── Anno
│ ├── list_bbox.txt
│ ├── list_joints.txt
│ └── list_landmarks.txt
├── Eval
│ └── list_eval_partition.txt
└── Img
├── XXX.jpg
└── ...
Then run python prepare_landmark_detect.py
to re-organize the dataset.
Please refer to dataset/LANDMARK_DETECT_DATASET.md for more info.
Polyvore dataset is widely used for learning fashion compatibility, containing rich multimodel information like images and descriptions of fashion items, number of likes of the outfit, etc. It is firstly collected by Maryland. Here we use a better sorted and grouped version from UIUC.
Download Polyvore
and put it in the data/
The file tree should be like this:
Polyvore
├── disjoint
│ ├── compatibility_test.txt
│ ├── compatibility_train.txt
│ ├── fill_in_blank_test.json
| └── ...
├── nondisjoint
│ └── ...
└── images
│ ├── XXX.jpg
├── categories.csv
├── polyvore_item_metadata.json
├── polyvore_outfit_titles.json