-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathUntiedConvLSTM.lua
183 lines (159 loc) · 6.41 KB
/
UntiedConvLSTM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
--[[
Convolutional LSTM for short term visual cell
inputSize - number of input feature planes
outputSize - number of output feature planes
rho - recurrent sequence length
kc - convolutional filter size to convolve input
km - convolutional filter size to convolve cell; usually km > kc
First step is untied.
--]]
require 'ConvLSTM'
local backend_name = 'cudnn'
local backend
if backend_name == 'cudnn' then
require 'cudnn'
backend = cudnn
else
backend = nn
end
local UntiedConvLSTM, parent = torch.class('nn.UntiedConvLSTM', 'nn.ConvLSTM')
function UntiedConvLSTM:__init(inputSize, outputSize, rho, kc, km, stride, batchSize)
parent.__init(self, inputSize, outputSize, rho, kc, km, stride, batchSize)
self.untiedModule = self:buildModelUntied()
end
function UntiedConvLSTM:buildGateUntied()
-- Note : Input is : input(t)
local gate = nn.Sequential()
gate:add(backend.SpatialConvolution(self.inputSize, self.outputSize, self.kc, self.kc, self.stride, self.stride, self.padc, self.padc))
gate:add(backend.Sigmoid())
return gate
end
function UntiedConvLSTM:buildCellGateUntied()
local cellGate = nn.Sequential()
cellGate:add(backend.SpatialConvolution(self.inputSize, self.outputSize, self.kc, self.kc, self.stride, self.stride, self.padc, self.padc))
cellGate:add(backend.Tanh())
self.cellGateUntied = cellGate
return cellGate
end
function UntiedConvLSTM:buildModelUntied()
-- Input is : input(t)
local model = nn.Sequential()
self.inputGateUntied = self:buildGateUntied()
self.cellGateUntied = self:buildCellGateUntied()
self.outputGateUntied = self:buildGateUntied()
local concat = nn.ConcatTable()
concat:add(self.inputGateUntied):add(self.cellGateUntied):add(self.outputGateUntied)
model:add(concat)
local cellAct = nn.Sequential()
cellAct:add(nn.NarrowTable(1,2))
cellAct:add(nn.CMulTable())
local concat2 = nn.ConcatTable()
concat2:add(cellAct):add(nn.SelectTable(3))
model:add(concat2)
local tanhcell = nn.Sequential()
tanhcell:add(nn.SelectTable(1)):add(backend.Tanh())
local concat3 = nn.ConcatTable()
concat3:add(nn.SelectTable(2)):add(tanhcell):add(nn.SelectTable(1))
model:add(concat3)
model:add(nn.FlattenTable())
local output = nn.Sequential()
output:add(nn.NarrowTable(1,2))
output:add(nn.CMulTable())
local concat4 = nn.ConcatTable()
concat4:add(output):add(nn.SelectTable(3))
model:add(concat4)
return model
end
function UntiedConvLSTM:updateOutput(input)
local prevOutput, prevCell
-- output(t), cell(t) = lstm{input(t), output(t-1), cell(t-1)}
local output, cell
if self.step == 1 then
if self.batchSize then
self.zeroTensor:resize(self.batchSize,self.outputSize,input:size(3),input:size(4)):zero()
else
self.zeroTensor:resize(self.outputSize,input:size(2),input:size(3)):zero()
end
output, cell = unpack(self.untiedModule:updateOutput(input))
else
-- previous output and memory of this module
prevOutput = self.outputs[self.step-1]
prevCell = self.cells[self.step-1]
if self.train ~= false then
self:recycle()
local recurrentModule = self:getStepModule(self.step)
-- the actual forward propagation
output, cell = unpack(recurrentModule:updateOutput{input, prevOutput, prevCell})
else
output, cell = unpack(self.recurrentModule:updateOutput{input, prevOutput, prevCell})
end
end
self.outputs[self.step] = output
self.cells[self.step] = cell
self.output = output
self.cell = cell
self.step = self.step + 1
self.gradPrevOutput = nil
self.updateGradInputStep = nil
self.accGradParametersStep = nil
self.gradParametersAccumulated = false
-- note that we don't return the cell, just the output
return self.output
end
function UntiedConvLSTM:_updateGradInput(input, gradOutput)
assert(self.step > 1, "expecting at least one updateOutput")
local step = self.updateGradInputStep - 1
assert(step >= 1)
-- set the output/gradOutput states of current Module
if self.gradPrevOutput then
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], self.gradPrevOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
end
local gradInput
local gradInputTable
local gradCell = (step == self.step-1) and (self.userNextGradCell or self.zeroTensor) or self.gradCells[step]
if step == 1 then
gradInput = self.untiedModule:updateGradInput(input, {gradOutput, gradCell})
else
local recurrentModule = self:getStepModule(step)
local output = self.outputs[step-1]
local cell = self.cells[step-1]
local inputTable = {input, output, cell}
-- backward propagate through this step
gradInputTable = recurrentModule:updateGradInput(inputTable, {gradOutput, gradCell})
gradInput, self.gradPrevOutput, gradCell = unpack(gradInputTable)
end
self.gradCells[step-1] = gradCell
if self.userPrevOutput then self.userGradPrevOutput = self.gradPrevOutput end
if self.userPrevCell then self.userGradPrevCell = gradCell end
return gradInput
end
function UntiedConvLSTM:_accGradParameters(input, gradOutput, scale)
local step = self.accGradParametersStep - 1
assert(step >= 1)
-- set the output/gradOutput states of current Module
gradOutput = (step == self.step-1) and gradOutput or self._gradOutputs[step]
gradCell = (step == self.step-1) and (self.userNextGradCell or self.zeroTensor) or self.gradCells[step]
gradOutputTable = {gradOutput, gradCell}
if step == 1 then
self.untiedModule:accGradParameters(input, gradOutputTable,scale)
else
local recurrentModule = self:getStepModule(step)
local output = self.outputs[step-1]
local cell = self.cells[step-1]
local inputTable = {input, output, cell}
recurrentModule:accGradParameters(inputTable, gradOutputTable,scale)
end
end
function UntiedConvLSTM:initBias(forgetBias, otherBias)
local fBias = forgetBias or 1
local oBias = otherBias or 0
self.inputGate.modules[2].modules[1].bias:fill(oBias)
self.outputGate.modules[2].modules[1].bias:fill(oBias)
self.cellGate.modules[2].modules[1].bias:fill(oBias)
self.forgetGate.modules[2].modules[1].bias:fill(fBias)
self.inputGateUntied.modules[1].bias:fill(oBias)
self.outputGateUntied.modules[1].bias:fill(oBias)
self.cellGateUntied.modules[1].bias:fill(oBias)
end