-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_articulatory_PCA.py
244 lines (208 loc) · 8.36 KB
/
train_articulatory_PCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
####################################################################################################
#
# Train the articulatory model using PCA
#
####################################################################################################
import argparse
import logging
import mlflow
import numpy as np
import os
import pandas as pd
import pickle as pkl
import random
import shutil
import tempfile
import torch
import yaml
from collections import OrderedDict
from numpy.random import MT19937
from numpy.random import RandomState, SeedSequence
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.decomposition import IncrementalPCA
from helpers import set_seeds, sequences_from_dict
from phoneme_to_articulation.principal_components.metrics import MeanP2CPDistance
from phoneme_to_articulation.principal_components.dataset import PrincipalComponentsAutoencoderDataset2
from settings import BASE_DIR, DATASET_CONFIG
TMPFILES = os.path.join(BASE_DIR, "tmp")
TMP_DIR = tempfile.mkdtemp(dir=TMPFILES)
RESULTS_DIR = os.path.join(TMP_DIR, "results")
if not os.path.exists(RESULTS_DIR):
os.makedirs(RESULTS_DIR)
def make_multiarticulator_autoencoder(transformers):
encoder_dict = OrderedDict()
decoder_dict = OrderedDict()
for articulator, transformer in transformers.items():
eigenvalues = transformer.explained_variance_
eigenvectors = transformer.components_
encoder_dict[f"encoders.{articulator}.eigenvalues"] = torch.from_numpy(eigenvalues).type(torch.float)
encoder_dict[f"encoders.{articulator}.eigenvectors"] = torch.from_numpy(eigenvectors).type(torch.float)
decoder_dict[f"decoders.{articulator}.eigenvalues"] = torch.from_numpy(eigenvalues).unsqueeze(dim=-1).type(torch.float)
decoder_dict[f"decoders.{articulator}.eigenvectors"] = torch.from_numpy(eigenvectors).type(torch.float)
return encoder_dict, decoder_dict
def main(
database_name,
datadir,
batch_size,
train_seq_dict,
test_seq_dict,
model_params,
num_workers=0,
clip_tails=True,
seed=0,
**kwargs,
):
gen = torch.Generator(device="cpu")
gen.manual_seed(seed)
articulators_indices_dict = model_params["indices_dict"]
articulators = sorted(articulators_indices_dict.keys())
n_articulators = len(articulators)
dataset_config = DATASET_CONFIG[database_name]
train_sequences = sequences_from_dict(datadir, train_seq_dict)
train_dataset = PrincipalComponentsAutoencoderDataset2(
database_name=database_name,
datadir=datadir,
sequences=train_sequences,
articulators=articulators,
clip_tails=clip_tails,
)
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
worker_init_fn=set_seeds,
generator=gen,
)
transformers = {}
for articulator, indices in articulators_indices_dict.items():
if isinstance(indices, list):
num_indices = len(indices)
else:
num_indices = indices
transformers[articulator] = IncrementalPCA(
n_components=num_indices,
batch_size=batch_size
)
progress_bar = tqdm(train_dataloader, desc=f"Training")
for _, inputs, _, _ in progress_bar:
inputs = inputs.numpy()
for i, articulator in enumerate(articulators):
transformers[articulator].partial_fit(inputs[:, i, :])
test_sequences = sequences_from_dict(datadir, test_seq_dict)
test_dataset = PrincipalComponentsAutoencoderDataset2(
database_name=database_name,
datadir=datadir,
sequences=test_sequences,
articulators=articulators,
clip_tails=clip_tails,
)
test_dataloader = DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
worker_init_fn=set_seeds,
generator=gen,
)
p2cp_fn = MeanP2CPDistance(reduction="none")
data_p2cp = torch.zeros(size=(0, n_articulators))
data_frame_names = []
progress_bar = tqdm(test_dataloader, desc=f"Testing")
for frame_names, inputs, _, phonemes in progress_bar:
inputs = inputs.numpy()
bs, _, features = inputs.shape
outputs = []
for i, articulator in enumerate(articulators):
latents = transformers[articulator].transform(inputs[:, i, :])
articulator_outputs = transformers[articulator].inverse_transform(latents)
outputs.append(articulator_outputs)
outputs = np.stack(outputs, axis=1)
targets = torch.from_numpy(inputs.reshape(
bs,
n_articulators,
2, features
// 2
)).type(torch.float)
outputs = torch.from_numpy(outputs.reshape(
bs,
n_articulators,
2,
features // 2
)).type(torch.float)
denorm_fns = {
articulator: norm_fn.inverse
for articulator, norm_fn
in test_dataset.normalize.items()
}
for i, articulator in enumerate(articulators):
outputs[:, i, :, :] = denorm_fns[articulator](outputs[:, i, :, :])
targets[:, i, :, :] = denorm_fns[articulator](targets[:, i, :, :])
p2cp = p2cp_fn(
outputs.permute(0, 1, 3, 2),
targets.permute(0, 1, 3, 2)
) * dataset_config.PIXEL_SPACING * dataset_config.RES
data_p2cp = torch.cat([data_p2cp, p2cp])
data_frame_names.extend([frame_name.split("_") for frame_name in frame_names])
for articulator in articulators:
articulator_transformer = transformers[articulator]
pkl_filepath = os.path.join(RESULTS_DIR, f"{articulator}_pca.pkl")
with open(pkl_filepath, "wb") as f:
pkl.dump(articulator_transformer, f)
mlflow.log_artifact(pkl_filepath)
encoders_dict, decoders_dict = make_multiarticulator_autoencoder(transformers)
best_encoders_path = os.path.join(RESULTS_DIR, "best_encoders.pt")
torch.save(encoders_dict, best_encoders_path)
mlflow.log_artifact(best_encoders_path)
best_decoders_path = os.path.join(RESULTS_DIR, "best_decoders.pt")
torch.save(decoders_dict, best_decoders_path)
mlflow.log_artifact(best_decoders_path)
df_errors_filepath = os.path.join(RESULTS_DIR, "reconstruction_errors.csv")
df_errors = pd.DataFrame(data_frame_names, columns=["subject", "sequence", "frame"])
df_errors[articulators] = data_p2cp
df_errors.to_csv(df_errors_filepath, index=False)
mlflow.log_artifact(df_errors_filepath)
df_errors_agg_filepath = os.path.join(RESULTS_DIR, "reconstruction_errors_agg.csv")
df_errors_agg = df_errors.agg({
articulator: ["mean", "std", "median", "min", "max"]
for articulator in articulators
}).reset_index()
df_errors_agg.to_csv(df_errors_agg_filepath, index=False)
mlflow.log_artifact(df_errors_agg_filepath)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", dest="config_filepath")
parser.add_argument("--mlflow", dest="mlflow_tracking_uri", default=None)
parser.add_argument("--experiment", dest="experiment_name", default="articulatory_pca")
parser.add_argument("--run_id", dest="run_id", default=None)
parser.add_argument("--run_name", dest="run_name", default=None)
parser.add_argument("--checkpoint", dest="checkpoint_filepath", default=None)
args = parser.parse_args()
seed = 0
rs = RandomState(MT19937(SeedSequence(seed)))
random.seed(seed)
torch.manual_seed(seed)
if args.mlflow_tracking_uri is not None:
mlflow.set_tracking_uri(args.mlflow_tracking_uri)
with open(args.config_filepath) as f:
cfg = yaml.safe_load(f)
experiment = mlflow.set_experiment(args.experiment_name)
with mlflow.start_run(
run_id=args.run_id,
experiment_id=experiment.experiment_id,
run_name=args.run_name
) as run:
print(f"Experiment ID: {experiment.experiment_id}\nRun ID: {run.info.run_id}")
try:
mlflow.log_artifact(args.config_filepath)
except shutil.SameFileError:
logging.info("Skipping logging config file since it already exists.")
try:
main(
**cfg,
checkpoint_filepath=args.checkpoint_filepath,
seed=seed,
)
finally:
shutil.rmtree(TMP_DIR)