@@ -6,9 +6,9 @@ A basic library for finding primes, providing a basic Iterator over all primes.
6
6
The simplest usage is simply to create an `Iterator`:
7
7
8
8
```
9
- use primes::{TrialDivision , PrimeSet};
9
+ use primes::{Sieve , PrimeSet};
10
10
11
- let mut pset = TrialDivision ::new();
11
+ let mut pset = Sieve ::new();
12
12
13
13
for (ix, n) in pset.iter().enumerate().take(10) {
14
14
println!("Prime {}: {}", ix, n);
@@ -24,29 +24,29 @@ for the given test, and primes are cached for later use.
24
24
# Example: Find the first prime after 1 million
25
25
26
26
```
27
- use primes::{TrialDivision , PrimeSet};
27
+ use primes::{Sieve , PrimeSet};
28
28
29
- let mut pset = TrialDivision ::new();
29
+ let mut pset = Sieve ::new();
30
30
let (ix, n) = pset.find(1_000_000);
31
31
32
32
println!("Prime {}: {}", ix, n);
33
33
```
34
34
35
35
# Example: Find the first ten primes *after* the thousandth prime
36
36
```
37
- use primes::{TrialDivision , PrimeSet};
37
+ use primes::{Sieve , PrimeSet};
38
38
39
- let mut pset = TrialDivision ::new();
39
+ let mut pset = Sieve ::new();
40
40
for (ix, n) in pset.iter().enumerate().skip(1_000).take(10) {
41
41
println!("Prime {}: {}", ix, n);
42
42
}
43
43
```
44
44
45
45
# Example: Find the first prime greater than 1000
46
46
```
47
- use primes::{TrialDivision , PrimeSet};
47
+ use primes::{Sieve , PrimeSet};
48
48
49
- let mut pset = TrialDivision ::new();
49
+ let mut pset = Sieve ::new();
50
50
let (ix, n) = pset.find(1_000);
51
51
println!("The first prime after 1000 is the {}th prime: {}", ix, n);
52
52
0 commit comments