-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy path内核request_mem_region 和 ioremap的理解.txt
185 lines (141 loc) · 9.28 KB
/
内核request_mem_region 和 ioremap的理解.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
版权声明:本文为博主kerneler辛苦原创,未经允许不得转载。
几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPU对IO端口的编址方式有两种:
(1)I/O映射方式(I/O-mapped)
典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间",CPU通过专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元。
(2)内存映射方式(Memory-mapped)
RISC指令系统的CPU(如MIPS ARM PowerPC等)通常只实现一个物理地址空间,像这种情况,外设的I/O端口的物理地址就被映射到内存地址空间中,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。
但是,这两者在硬件实现上的差异对于软件来说是完全透明的,驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源。
一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,由硬件的设计决定。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间。
但要使用I/O内存首先要申请,然后才能映射,使用I/O端口首先要申请,或者叫请求,对于I/O端口的请求意思是让内核知道你要访问这个端口,这样内核知道了以后它就不会再让别人也访问这个端口了.毕竟这个世界僧多粥少啊.申请I/O端口的函数是request_region, 申请I/O内存的函数是request_mem_region, 来自include/linux/ioport.h, 如下:
* Convenience shorthand with allocation */
#define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name))
#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name))
#define rename_region(region, newname) do { (region)->name = (newname); } while (0)
extern struct resource * __request_region(struct resource *,
resource_size_t start,
resource_size_t n, const char *name);
这里关键来解析一下request_mem_region函数。
Linux把基于I/O映射方式的I/O端口和基于内存映射方式的I/O端口资源统称为“I/O区域”(I/O Region)。I/O Region仍然是一种I/O资源,因此它仍然可以用resource结构类型来描述。
Linux是以一种倒置的树形结构来管理每一类I/O资源(如:I/O端口、外设内存、DMA和IRQ)的。每一类I/O资源都对应有一颗倒置的资源树,树中的每一个节点都是一个resource结构,而树的根结点root则描述了该类资源的整个资源空间。
1.结构体
1.1>struct resource iomem_resource = { "PCI mem", 0x00000000, 0xffffffff, IORESOURCE_MEM };
1.2>struct resource {
const char *name;
unsigned long start, end;
unsigned long flags;
struct resource *parent, *sibling, *child;
};
2.调用函数
request_mem_region(S1D_PHYSICAL_REG_ADDR,S1D_PHYSICAL_REG_SIZE, "EpsonFB_RG")
#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name))
__request_region检查是否可以安全占用起始物理地址S1D_PHYSICAL_REG_ADDR之后的连续S1D_PHYSICAL_REG_SIZE字节大小空间
struct resource * __request_region(struct resource *parent, unsigned long start, unsigned long n, const char *name)
{
struct resource *res = kmalloc(sizeof(*res), GFP_KERNEL);
if (res) {
memset(res, 0, sizeof(*res));
res->name = name;
res->start = start;
res->end = start + n - 1;
res->flags = IORESOURCE_BUSY;
write_lock(&resource_lock);
for (;;) {
struct resource *conflict;
conflict = __request_resource(parent, res);
//sibling parent下的所有单元,检测申请部分是否存在交叠冲突
if (!conflict)
//conflict=0;申请成功,正常安置了[start,end]到相应位置
break;
if (conflict != parent) {
parent = conflict;
if (!(conflict->flags & IORESOURCE_BUSY))
continue;
}
kfree(res);
//检测到了资源交叠冲突,kfree归还kmalloc申请的内存
res = NULL;
break;
}
write_unlock(&resource_lock);
}
return res;
}
static struct resource * __request_resource(struct resource *root, struct resource *new)
{
unsigned long start = new->start;
unsigned long end = new->end;
struct resource *tmp, **p;
if (end < start)
return root;
if (start < root->start)
return root;
if (end > root->end)
return root;
p = &root->child;
//root下的第一个链表元素*p.[child链表是以I/O资源物理地址从低到高的顺序排列的]
for (;;) {
tmp = *p;
if (!tmp || tmp->start > end) {
new->sibling = tmp;
*p = new;
//可以从root->child=null开始我们的分析考虑,此时tmp=null,那么第一个申请将以!tmp条件满足而进入
//这时root->child的值为new指针,new->sibling = tmp = null;当第二次申请发生时:如果tmp->start > end成立,
//那么,root->child的值为new指针,new->sibling = tmp;这样就链接上了,空间分布图如:
//child=[start,end]-->[tmp->start,tmp->end](1);
//如果条件tmp->start > end不成立,那么只能是!tmp条件进入
//那么,root->child的值不变,tmp->sibling = new;new->sibling = tmp = null这样就链接上了,空间分布图如:
//child=[child->start,child->end]-->[start,end](2);
//当第三次申请发生时:如果start在(2)中的[child->end,end]之间,那么tmp->end < start将成立,继而continue,
//此时tmp = (2)中的[start,end],因为tmp->start < end,所以继续执行p = &tmp->slibing = null,
//因为tmp->end > start,所以资源冲突,返回(2)中的[start,end]域
//综上的两个边界值情况和一个中间值情况的分析,可以知道代码实现了一个从地地址到高地址的顺序链表
//模型图:childe=[a,b]-->[c,d]-->[e,f],此时有一个[x,y]需要插入进去,tmp作为sibling指针游动
//tmp指向child=[a,b],
//tmp指向[a,b],当tmp->start>y时,插入后的链接图为:child=[x,y]-->[a,b]-->[c,d]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向[c,d],当tmp->start>y时,插入后的链接图为:child=[a,b]-->[x,y]-->[c,d]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向[e,f],当tmp->start>y时,插入后的链接图为:child=[a,b]-->[c,d]-->[x,y]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向null ,插入后的链接图为:child=[a,b]-->[c,d]-->[e,f]-->[x,y]-->null;
//顺利的达到了检测冲突,顺序链接的目的
new->parent = root;
return NULL;
}
p = &tmp->sibling;
if (tmp->end < start)
continue;
return tmp;
}
}
其实说白了,request_mem_region函数并没有做实际性的映射工作,只是告诉内核要使用一块内存地址,声明占有,也方便内核管理这些资源。
重要的还是ioremap函数,ioremap主要是检查传入地址的合法性,建立页表(包括访问权限),完成物理地址到虚拟地址的转换。
void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);
iounmap函数用于取消ioremap()所做的映射,原型如下:
void iounmap(void * addr);
这两个函数都是实现在mm/ioremap.c文件中。
在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。如在x86平台上,读写I/O的函数如下所示:
#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))
#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))
#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))
#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))
#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))
#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))
#define memset_io(a,b,c) memset(__io_virt(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))
#define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c))
最后,特别强调驱动程序中mmap函数的实现方法。用mmap映射一个设备,意味着使用户空间的一段地址关联到设备内存上,这使得只要程序在分配的地址范围内进行读取或者写入,实际上就是对设备的访问。
void * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)
void *ioremap(unsigned long phys_addr, unsigned long size)
入口: phys_addr:要映射的起始的IO地址;
size:要映射的空间的大小;
flags:要映射的IO空间的和权限有关的标志;
phys_addr:是要映射的物理地址,
size:是要映射的长度,
S3C2410的long是32位而非64位。
功能:将一个IO地址空间映射到内核的虚拟地址空间上去,便于访问;
实现:对要映射的IO地址空间进行判断,低PCI/ISA地址不需要重新映射,也不允许用户将IO地址空间映射到正在使用的RAM中,
最后申请一个 vm_area_struct结构,调用remap_area_pages填写页表,若填写过程不成功则释放申请的vm_area_struct空间;
ioremap 依靠 __ioremap实现,它只是在__ioremap中以第三个参数为0调用来实现.
ioremap是内核提供的用来映射外设寄存器到主存的函数,我们要映射的地址已经从pci_dev中读了出来(上一步),这样就水到渠成的成功映射
了而不会和其他地址有冲突。映射完了有什么效果呢,我举个例子,比如某个网卡有100 个寄存器,他们都是连在一块的,位置是固定的,
假如每个寄存器占4个字节,那么一共400个字节的空间被映射到内存成功后,ioaddr就是这段地址的开头(注意ioaddr是虚拟地址,
而mmio_start是物理地址,它是BIOS得到的,肯定是物理地址,而保护模式下CPU不认物理地址,只认虚拟地址),ioaddr+0就是第一个寄存器
的地址,ioaddr+4就是第二个寄存器地址(每个寄存器占4个字节),以此类推,我们就能够在内存中访问到所有的寄存器进而操控他们了。