-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathtext_classification.py
301 lines (258 loc) · 14.9 KB
/
text_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""
Example code to fine-tuning the Transformer models for sequence classification on the GLUE benchmark
at https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue_no_trainer.py
modified to collaborate with torchdistill.
Original copyright of The HuggingFace Inc. code below, modifications by Yoshitomo Matsubara, Copyright 2021.
"""
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import time
import datasets
import evaluate as hf_evaluate
import numpy as np
import pandas as pd
import torch
import transformers
from accelerate import Accelerator, DistributedType
from torch.backends import cudnn
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding
from custom.dataset import load_raw_glue_datasets_and_misc, preprocess_glue_datasets
from custom.optim import customize_lr_config
from torchdistill.common import file_util, yaml_util
from torchdistill.common.constant import def_logger
from torchdistill.common.main_util import is_main_process, setup_for_distributed, set_seed, import_dependencies
from torchdistill.core.distillation import get_distillation_box
from torchdistill.core.training import get_training_box
from torchdistill.datasets import util
from torchdistill.datasets.registry import register_collate_func
from torchdistill.misc.log import set_basic_log_config, setup_log_file, SmoothedValue, MetricLogger
logger = def_logger.getChild(__name__)
def get_argparser():
parser = argparse.ArgumentParser(description='Knowledge distillation for text classification models')
parser.add_argument('--config', required=True, help='yaml file path')
parser.add_argument('--run_log', help='log file path')
parser.add_argument('--task_name', type=str, default=None, help='name of the glue task to train on.')
parser.add_argument('--private_output', help='output dir path for private dataset(s)')
parser.add_argument('--seed', type=int, default=None, help='a seed for reproducible training')
parser.add_argument('-disable_cudnn_benchmark', action='store_true', help='disable torch.backend.cudnn.benchmark')
parser.add_argument('-test_only', action='store_true', help='only test the models')
parser.add_argument('-student_only', action='store_true', help='test the student model only')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('-adjust_lr', action='store_true',
help='multiply learning rate by number of distributed processes (world_size)')
return parser
def load_tokenizer_and_model(model_config, task_name, prioritizes_dst_ckpt=False):
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_config = model_config['config_kwargs']
config = AutoConfig.from_pretrained(**config_config, finetuning_task=task_name)
tokenizer_config = model_config['tokenizer_kwargs']
tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config)
model_kwargs = model_config['model_kwargs']
if prioritizes_dst_ckpt and file_util.check_if_exists(model_config.get('dst_ckpt', None)):
model_kwargs['pretrained_model_name_or_path'] = model_config['dst_ckpt']
elif file_util.check_if_exists(model_config.get('src_ckpt', None)):
model_kwargs['pretrained_model_name_or_path'] = model_config['src_ckpt']
model = AutoModelForSequenceClassification.from_pretrained(config=config, **model_kwargs)
return tokenizer, model
def get_all_datasets(datasets_config, task_name, student_tokenizer, student_model):
dataset_dict = dict()
label_names_dict = dict()
is_regression = None
for dataset_name in datasets_config.keys():
dataset_config = datasets_config[dataset_name]
raw_data_kwargs = dataset_config['raw_data_kwargs']
base_split_name = dataset_config.get('base_split_name', 'train')
sub_task_name = dataset_config.get('name', task_name)
raw_datasets, num_labels, label_names, is_regression = \
load_raw_glue_datasets_and_misc(sub_task_name, base_split_name=base_split_name, **raw_data_kwargs)
pad_to_max_length = dataset_config.get('pad_to_max_length', False)
max_length = dataset_config.get('pad_to_max_length', 128)
sub_dataset_dict = \
preprocess_glue_datasets(sub_task_name, raw_datasets, num_labels, label_names, is_regression,
pad_to_max_length, max_length, student_tokenizer, student_model, base_split_name)
for split_name, dataset_id in dataset_config['dataset_id_map'].items():
dataset_dict[dataset_id] = sub_dataset_dict[split_name]
label_names_dict[sub_task_name] = label_names
return dataset_dict, label_names_dict, is_regression
def get_metrics(task_name):
metric = hf_evaluate.load('glue', task_name)
return metric
def train_one_epoch(training_box, epoch, log_freq):
metric_logger = MetricLogger(delimiter=' ')
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value}'))
metric_logger.add_meter('sample/s', SmoothedValue(window_size=10, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
for sample_batch in \
metric_logger.log_every(training_box.train_data_loader, log_freq, header):
start_time = time.time()
loss = training_box.forward_process(sample_batch, targets=None, supp_dict=None)
training_box.post_forward_process(loss=loss)
batch_size = len(sample_batch)
metric_logger.update(loss=loss.item(), lr=training_box.optimizer.param_groups[0]['lr'])
metric_logger.meters['sample/s'].update(batch_size / (time.time() - start_time))
@torch.inference_mode()
def evaluate(model, data_loader, metric, is_regression, accelerator, title=None, header='Test: '):
if title is not None:
logger.info(title)
model.eval()
for batch in data_loader:
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch['labels']),
)
eval_dict = metric.compute()
eval_desc = header + ', '.join([f'{key} = {eval_dict[key]}' for key in sorted(eval_dict.keys())])
logger.info(eval_desc)
return eval_dict
def train(teacher_model, student_model, dataset_dict, is_regression, dst_ckpt_dir_path, metric,
device, device_ids, distributed, config, args, accelerator):
logger.info('Start training')
train_config = config['train']
lr_factor = args.world_size if distributed and args.adjust_lr else 1
training_box = get_training_box(student_model, dataset_dict, train_config,
device, device_ids, distributed, lr_factor, accelerator) if teacher_model is None \
else get_distillation_box(teacher_model, student_model, dataset_dict, train_config,
device, device_ids, distributed, lr_factor, accelerator)
# Only show the progress bar once on each machine.
log_freq = train_config['log_freq']
best_val_number = 0.0
for epoch in range(training_box.num_epochs):
training_box.pre_epoch_process(epoch=epoch)
train_one_epoch(training_box, epoch, log_freq)
val_dict = evaluate(student_model, training_box.val_data_loader, metric, is_regression,
accelerator, header='Validation: ')
val_value = sum(val_dict.values())
if val_value > best_val_number:
logger.info('Updating ckpt at {}'.format(dst_ckpt_dir_path))
best_val_number = val_value
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(student_model)
unwrapped_model.save_pretrained(dst_ckpt_dir_path, save_function=accelerator.save)
training_box.post_epoch_process()
@torch.inference_mode()
def predict_private(model, dataset_dict, label_names_dict, is_regression, accelerator,
private_configs, private_output_dir_path):
logger.info('Start prediction for private dataset(s)')
model.eval()
for private_config in private_configs:
# Dataset
private_data_loader_config = private_config['private_data_loader']
private_dataset_id = private_data_loader_config['dataset_id']
private_dataset = dataset_dict[private_dataset_id]
label_names = label_names_dict[private_data_loader_config['task_name']]
logger.info('{}: {} samples'.format(private_dataset_id, len(private_dataset)))
# Dataloader
private_data_loader = util.build_data_loader(private_dataset, private_data_loader_config, False)
private_data_loader = accelerator.prepare(private_data_loader)
# Prediction
private_output_file_path = os.path.join(private_output_dir_path, private_config['pred_output'])
file_util.make_parent_dirs(private_output_file_path)
np_preds = None
for batch in private_data_loader:
batch.pop('labels')
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
predictions = predictions.detach().cpu().numpy()
np_preds = predictions if np_preds is None else np.append(np_preds, predictions, axis=0)
df_output = pd.DataFrame({'prediction': np_preds})
# Map prediction index to label name
if not is_regression and private_config.get('idx2str', True):
df_output.prediction = df_output.prediction.apply(lambda pred_idx: label_names[pred_idx])
df_output.to_csv(private_output_file_path, sep='\t', index=True, index_label='index')
def main(args):
set_basic_log_config()
log_file_path = args.run_log
if is_main_process() and log_file_path is not None:
setup_log_file(os.path.expanduser(log_file_path))
world_size = args.world_size
logger.info(args)
if not args.disable_cudnn_benchmark:
cudnn.benchmark = True
set_seed(args.seed)
config = yaml_util.load_yaml_file(os.path.expanduser(args.config))
import_dependencies(config.get('dependencies', None))
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
distributed = accelerator.state.distributed_type == DistributedType.MULTI_GPU
device_ids = [accelerator.device.index]
if distributed:
setup_for_distributed(is_main_process())
logger.info(accelerator.state)
device = accelerator.device
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Load pretrained model and tokenizer
task_name = args.task_name
models_config = config['models']
teacher_model_config = models_config.get('teacher_model', None)
teacher_tokenizer, teacher_model = (None, None) if teacher_model_config is None \
else load_tokenizer_and_model(teacher_model_config, task_name, True)
student_model_config =\
models_config['student_model'] if 'student_model' in models_config else models_config['model']
student_tokenizer, student_model = load_tokenizer_and_model(student_model_config, task_name, False)
dst_ckpt_dir_path = student_model_config['dst_ckpt']
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
dataset_dict, label_names_dict, is_regression = \
get_all_datasets(config['datasets'], task_name, student_tokenizer, student_model)
# Update config with dataset size len(data_loader)
customize_lr_config(config, dataset_dict, world_size)
# register collate function
register_collate_func(DataCollatorWithPadding(student_tokenizer,
pad_to_multiple_of=(8 if accelerator.use_fp16 else None)))
# Get the metric function
metric = get_metrics(task_name)
if not args.test_only:
train(teacher_model, student_model, dataset_dict, is_regression, dst_ckpt_dir_path, metric,
device, device_ids, distributed, config, args, accelerator)
student_tokenizer.save_pretrained(dst_ckpt_dir_path)
test_config = config['test']
test_data_loader_config = test_config['test_data_loader']
test_data_loader = util.build_data_loader(dataset_dict[test_data_loader_config['dataset_id']],
test_data_loader_config, distributed)
test_data_loader = accelerator.prepare(test_data_loader)
cudnn.benchmark = False
cudnn.deterministic = True
if not args.student_only and teacher_model is not None:
teacher_model = teacher_model.to(accelerator.device)
evaluate(teacher_model, test_data_loader, metric, is_regression, accelerator,
title='[Teacher: {}]'.format(teacher_model_config['key']))
# Reload the best checkpoint based on validation result
student_tokenizer, student_model = load_tokenizer_and_model(student_model_config, task_name, True)
student_model = accelerator.prepare(student_model)
evaluate(student_model, test_data_loader, metric, is_regression, accelerator,
title='[Student: {}]'.format(student_model_config['key']))
# Output prediction for private dataset(s) if both the config and output dir path are given
private_configs = config.get('private', None)
private_output_dir_path = args.private_output
if private_configs is not None and private_output_dir_path is not None and is_main_process():
predict_private(student_model, dataset_dict, label_names_dict, is_regression, accelerator,
private_configs, private_output_dir_path)
if __name__ == '__main__':
argparser = get_argparser()
main(argparser.parse_args())