-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
50 lines (36 loc) · 1.79 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import argparse
import json
from huggingface_hub import hf_hub_download
def init(args):
model_path = args.model_path
data_path = args.data_dir
# download:
if args.d:
print("Downloading default model into provided model path now...")
if not os.path.exists(model_path):
default_model="TheBloke/Llama-2-7B-Chat-GGUF"
hf_hub_download(repo_id=default_model, filename="llama-2-7b-chat.Q2_K.gguf", local_dir=model_path)
# verify that model is downloaded
if not os.path.isfile(model_path):
raise FileNotFoundError("Model Path {}does not exist!".format(model_path))
# verify data
if not os.path.exists(data_path):
raise FileNotFoundError("Data Directory {} does not exist! Ensure that you create it and place pdfs into it.".format(data_path))
elif len(os.listdir(data_path)) == 0:
raise RuntimeError('Data Directory {} is empty'.format(data_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='RAGChatBot',
description="Retrieval Augmented Generation Chatbot",
)
parser.add_argument("-data_dir", type=str, default="./data", help="Path to directory contianing all pdfs.")
parser.add_argument("-model_path", type=str, default="./model/llama-2-7b-chat.Q2_K.gguf", help="Path to LLM model with .gguf extension.")
parser.add_argument("-d", action='store_true', help="Flag to download user's requested model, defaults to TheBloke/Llama-2-7B-Chat-GGUF")
args = parser.parse_args()
init(args)
arg_dict = vars(args)
# save args
with open("args.json", 'w') as f:
f.write(json.dumps(arg_dict))
os.system("chainlit run clrun.py")