-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
87 lines (76 loc) · 3.33 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import argparse
from PIL import Image
from paddle.vision.transforms import transforms
import cv2
import paddle
from models.dcl import DCLNet as MainModel
from utils.eval_model import eval_turn
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
class LoadConfig:
def __init__(self, args):
# 预训练权重
self.pretrained_model = '/data/zhangzichao/models/resnet50.pdparams'
if args.dataset == 'CUB':
self.dataset = args.dataset
self.rawdata_root = '/data/zhangzichao/datasets/CUB/images'
self.anno_root = './datasets/CUB'
self.numcls = 200
elif args.dataset == 'STCAR':
self.dataset = args.dataset
self.rawdata_root = '/data/zhangzichao/datasets/StanfordCars/car_ims/'
self.anno_root = './datasets/STCAR'
self.numcls = 196
elif args.dataset == 'AIR':
self.dataset = args.dataset
self.rawdata_root = '/data/zhangzichao/datasets/fgvc-aircraft-2013b/data/images/'
self.anno_root = './datasets/AIR'
self.numcls = 100
elif args.dataset == 'CUB_TINY':
self.dataset = args.dataset
self.rawdata_root = './datasets/CUB_TINY'
self.anno_root = './datasets/CUB_TINY'
self.numcls = 4
else:
raise Exception('dataset not defined')
self.test_anno = pd.read_csv(os.path.join(self.anno_root, 'test.txt'), sep=",", header=None,
names=['ImageName', 'label'])
self.swap_num = args.swap_num
def parse_args():
parser = argparse.ArgumentParser(description='dcl parameters')
parser.add_argument('--gpus', dest='gpus', default='0', type=str)
parser.add_argument('--data', dest='dataset', default='CUB', required=True, type=str)
parser.add_argument('--img', dest='img', default='resources/Black_Footed_Albatross_0001_796111.jpg',
required=True, type=str)
parser.add_argument('--pdparams', dest='model_weight',
default='outputs/CUB/checkpoints/dcl_cub-20220416-183150.pdparams', type=str)
parser.add_argument('--size', dest='resize_resolution', default=512, type=int)
parser.add_argument('--crop', dest='crop_resolution', default=448, type=int)
parser.add_argument('--swap_num', dest='swap_num', default=7, type=int, help='specify a range')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
paddle.device.set_device(f'gpu:{args.gpus}')
Config = LoadConfig(args)
# 数据集加载
tfs = transforms.Compose([
transforms.Resize(args.resize_resolution),
transforms.CenterCrop(args.crop_resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_img = Image.open(args.img).convert('RGB')
cv_img = cv2.imread(args.img)
cv2.imshow('pic', cv_img)
cv2.waitKey(5)
input_tensor = tfs(test_img).unsqueeze(0)
model = MainModel(Config)
model.load_dict(paddle.load(args.model_weight))
model.eval()
with paddle.no_grad():
output = model(input_tensor)
pre = paddle.argmax(output[0], axis=-1).item()
print("prediction:", pre)