-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_model.py
118 lines (102 loc) · 3.68 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from __future__ import absolute_import
from __future__ import print_function
import os
import argparse
from keras.preprocessing.image import ImageDataGenerator
import keras.backend as K
from models import get_model
from datasets import get_data
from callback_util import LoggerCallback, get_lr_scheduler
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint
from util import local_shuffle
def train(dataset='mnist', batch_size=128, epochs=50):
"""
Train one model with data augmentation: random padding+cropping and horizontal flip
:param args:
:return:
"""
print('Data set: %s, batch: %s, epochs: %s' % (dataset, batch_size, epochs))
X_train, Y_train, X_test, Y_test = get_data(dataset, clip_min=-0.5, clip_max=0.5, onehot=True)
n_images = X_train.shape[0]
image_shape = X_train.shape[1:]
n_class = Y_train.shape[1]
print("n_images:", n_images, "n_class:", n_class, "image_shape:", image_shape)
model = get_model(dataset, softmax=True)
# model.summary()
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
# training with data augmentation
if dataset == 'mnist':
datagen = ImageDataGenerator(preprocessing_function=local_shuffle)
else:
datagen = ImageDataGenerator(
rotation_range=10,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
preprocessing_function=local_shuffle)
datagen.fit(X_train)
callbacks = []
# acc, loss, lid
log_callback = LoggerCallback(K.get_session(), model, X_test, Y_test, dataset, epochs)
callbacks.append(log_callback)
model_path = './model'
if not os.path.exists(model_path):
os.makedirs(model_path)
cp_callback = ModelCheckpoint("model/shuffle_%s.hdf5" % dataset,
monitor='acc',
verbose=0,
save_best_only=False,
save_weights_only=True,
period=10)
callbacks.append(cp_callback)
model.fit_generator(
datagen.flow(X_train, Y_train, batch_size=batch_size),
steps_per_epoch=len(X_train) / batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_test, Y_test),
callbacks=callbacks)
def main(args):
"""
Train model with data augmentation: random padding+cropping and horizontal flip
:param args:
:return:
"""
assert args.dataset in ['mnist', 'cifar-10', 'svhn', 'all'], \
"dataset parameter must be either 'mnist', 'cifar', 'svhn' or all"
if args.dataset == 'all':
for dataset in ['mnist', 'cifar-10', 'svhn']:
train(dataset, args.batch_size, args.epochs)
else:
train(args.dataset, args.batch_size, args.epochs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-d', '--dataset',
help="Dataset to use; either 'mnist', 'cifar-10', 'svhn' or 'all'",
required=True, type=str
)
parser.add_argument(
'-e', '--epochs',
help="The number of epochs to train for.",
required=False, type=int
)
parser.add_argument(
'-b', '--batch_size',
help="The batch size to use for training.",
required=False, type=int
)
parser.set_defaults(epochs=100)
parser.set_defaults(batch_size=128)
args = parser.parse_args()
main(args)
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
#
# args = parser.parse_args(['-d', 'cifar-10', '-e', '100', '-b', '128'])
# main(args)
K.clear_session()