Skip to content

Commit a4a40b6

Browse files
committedOct 19, 2024
Create interactivechat.py
1 parent 0214867 commit a4a40b6

File tree

1 file changed

+150
-0
lines changed

1 file changed

+150
-0
lines changed
 

‎interactivechat.py

+150
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,150 @@
1+
import os
2+
import PIL.Image
3+
import torch
4+
import numpy as np
5+
from transformers import AutoModelForCausalLM
6+
from janus.models import MultiModalityCausalLM, VLChatProcessor
7+
import time
8+
import re
9+
10+
# Specify the path to the model
11+
model_path = "deepseek-ai/Janus-1.3B"
12+
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
13+
tokenizer = vl_chat_processor.tokenizer
14+
15+
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
16+
model_path, trust_remote_code=True
17+
)
18+
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
19+
20+
21+
def create_prompt(user_input: str) -> str:
22+
conversation = [
23+
{
24+
"role": "User",
25+
"content": user_input,
26+
},
27+
{"role": "Assistant", "content": ""},
28+
]
29+
30+
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
31+
conversations=conversation,
32+
sft_format=vl_chat_processor.sft_format,
33+
system_prompt="",
34+
)
35+
prompt = sft_format + vl_chat_processor.image_start_tag
36+
return prompt
37+
38+
39+
@torch.inference_mode()
40+
def generate(
41+
mmgpt: MultiModalityCausalLM,
42+
vl_chat_processor: VLChatProcessor,
43+
prompt: str,
44+
short_prompt: str,
45+
parallel_size: int = 16,
46+
temperature: float = 1,
47+
cfg_weight: float = 5,
48+
image_token_num_per_image: int = 576,
49+
img_size: int = 384,
50+
patch_size: int = 16,
51+
):
52+
input_ids = vl_chat_processor.tokenizer.encode(prompt)
53+
input_ids = torch.LongTensor(input_ids)
54+
55+
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda()
56+
for i in range(parallel_size * 2):
57+
tokens[i, :] = input_ids
58+
if i % 2 != 0:
59+
tokens[i, 1:-1] = vl_chat_processor.pad_id
60+
61+
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
62+
63+
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
64+
outputs = None # Initialize outputs for use in the loop
65+
66+
for i in range(image_token_num_per_image):
67+
outputs = mmgpt.language_model.model(
68+
inputs_embeds=inputs_embeds,
69+
use_cache=True,
70+
past_key_values=outputs.past_key_values if i != 0 else None
71+
)
72+
hidden_states = outputs.last_hidden_state
73+
74+
logits = mmgpt.gen_head(hidden_states[:, -1, :])
75+
logit_cond = logits[0::2, :]
76+
logit_uncond = logits[1::2, :]
77+
78+
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
79+
probs = torch.softmax(logits / temperature, dim=-1)
80+
81+
next_token = torch.multinomial(probs, num_samples=1)
82+
generated_tokens[:, i] = next_token.squeeze(dim=-1)
83+
84+
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
85+
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
86+
inputs_embeds = img_embeds.unsqueeze(dim=1)
87+
88+
dec = mmgpt.gen_vision_model.decode_code(
89+
generated_tokens.to(dtype=torch.int),
90+
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
91+
)
92+
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
93+
94+
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
95+
96+
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
97+
visual_img[:, :, :] = dec
98+
99+
os.makedirs('generated_samples', exist_ok=True)
100+
101+
# Create a timestamp
102+
timestamp = time.strftime("%Y%m%d-%H%M%S")
103+
104+
# Sanitize the short_prompt to ensure it's safe for filenames
105+
short_prompt = re.sub(r'\W+', '_', short_prompt)[:50]
106+
107+
# Save images with timestamp and part of the user prompt in the filename
108+
for i in range(parallel_size):
109+
save_path = os.path.join('generated_samples', f"img_{timestamp}_{short_prompt}_{i}.jpg")
110+
PIL.Image.fromarray(visual_img[i]).save(save_path)
111+
112+
113+
def interactive_image_generator():
114+
print("Welcome to the interactive image generator!")
115+
116+
# Ask for the number of images at the start of the session
117+
while True:
118+
num_images_input = input("How many images would you like to generate per prompt? (Enter a positive integer): ")
119+
if num_images_input.isdigit() and int(num_images_input) > 0:
120+
parallel_size = int(num_images_input)
121+
break
122+
else:
123+
print("Invalid input. Please enter a positive integer.")
124+
125+
while True:
126+
user_input = input("Please describe the image you'd like to generate (or type 'exit' to quit): ")
127+
128+
if user_input.lower() == 'exit':
129+
print("Exiting the image generator. Goodbye!")
130+
break
131+
132+
prompt = create_prompt(user_input)
133+
134+
# Create a sanitized version of user_input for the filename
135+
short_prompt = re.sub(r'\W+', '_', user_input)[:50]
136+
137+
print(f"Generating {parallel_size} image(s) for: '{user_input}'")
138+
generate(
139+
mmgpt=vl_gpt,
140+
vl_chat_processor=vl_chat_processor,
141+
prompt=prompt,
142+
short_prompt=short_prompt,
143+
parallel_size=parallel_size # Pass the user-specified number of images
144+
)
145+
146+
print("Image generation complete! Check the 'generated_samples' folder for the output.\n")
147+
148+
149+
if __name__ == "__main__":
150+
interactive_image_generator()

0 commit comments

Comments
 (0)
Please sign in to comment.