Skip to content

DUCH714/SincKAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sinc Kolmogorov-Arnold Network

This repository contains companion code for "Sinc Kolmogorov-Arnold Network and Its Applications on Physics-informed Neural Networks". We provide instructions for reproducing our experiments and plots.

Requirements

To install requirements:

anaconda:

conda install -r environment.yml

docker:

docker pull ghcr.io/nvidia/jax:equinox

Data

To generate data, you can use the current dataset in data.py or you can add new data.

Training

To train the model(s) in the paper, change the directory to the specific directory,

for example, run command for approximation:

cd ./approximation/
python approximation_1d.py --mode train

Evaluation

To evaluate the model(s) in the paper, change the directory to the specific directory,

for example, run command for approximation:

cd ./approximation/
python approximation_1d.py --mode eval

Results ($L^2$ Relative errors)

We demostrate partial results of our paper:

Model name MLP KAN SincKAN
pbl 2.89e-2 ± 3.09e-2 4.48e-3 ± 4.20e-3 1.88e-3 ± 8.55e-4
bl_1000 9.87 ± 8.70 11.3 ± 8.79 5.48e-3 ± 3.45e-3

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages