-
Notifications
You must be signed in to change notification settings - Fork 215
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #120 from EvolvingLMMs-Lab/pufanyi/hf_dataset_docs
Add docs for datasets upload to HF
- Loading branch information
Showing
3 changed files
with
294 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Contribute Your Models and Datasets\n", | ||
"\n", | ||
"[](https://colab.research.google.com/github/EvolvingLMMs-Lab/lmms-eval/blob/main/tools/make_image_hf_dataset.ipynb)\n", | ||
"\n", | ||
"This notebook will guide you to make correct format of Huggingface dataset, in proper parquet format and visualizable in Huggingface dataset hub.\n", | ||
"\n", | ||
"We will take the example of the dataset [`lmms-lab/VQAv2_TOY`](https://huggingface.co/datasets/lmms-lab/VQAv2_TOY) and convert it to the proper format." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Preparation\n", | ||
"\n", | ||
"We need to install `datasets` library to create the dataset and `Pillow` to handle images." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"vscode": { | ||
"languageId": "shellscript" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!pip install datasets Pillow" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"And we need to login into Hugging Face to upload the dataset. You should goto the [Hugging Face website](https://huggingface.co/settings/tokens) to get your API token." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"vscode": { | ||
"languageId": "shellscript" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!huggingface-cli login --token hf_YOUR_HF_TOKEN # replace hf_YOUR_HF_TOKEN to your own Hugging Face token." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"vscode": { | ||
"languageId": "plaintext" | ||
} | ||
}, | ||
"source": [ | ||
"## Download Dataset\n", | ||
"\n", | ||
"We have uploaded the zip file of the dataset to [Hugging Face](https://huggingface.co/datasets/pufanyi/VQAv2_TOY/tree/main/source_data) for download. This dataset is a subset of the [VQAv2](https://visualqa.org/) dataset, with $20$ entries each from the `val`, `test`, and `test-dev` splits, for easier downloading." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"vscode": { | ||
"languageId": "shellscript" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!wget https://huggingface.co/datasets/lmms-lab/VQAv2_TOY/resolve/main/source_data/sample_data.zip -P data\n", | ||
"!unzip data/sample_data.zip -d data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We can open `data/questions` to take a view of the dataset organization. We found that the toy-`VQAv2` dataset is organized as follows:\n", | ||
"\n", | ||
"```json\n", | ||
"{\n", | ||
" \"info\": { /* some infomation */ },\n", | ||
" \"task_type\": \"TASK_TYPE\", \"data_type\": \"mscoco\",\n", | ||
" \"license\": { /* some license */ },\n", | ||
" \"questions\": [\n", | ||
" {\n", | ||
" \"image_id\": 262144, // integer id of the image\n", | ||
" \"question\": \"Is the ball flying towards the batter?\",\n", | ||
" \"question_id\": 262144000\n", | ||
" },\n", | ||
" /* ... */\n", | ||
" ]\n", | ||
"}\n", | ||
"```" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define Dataset Features _(Optional<sup>*</sup>)_\n", | ||
"\n", | ||
"You can define the features of the dataset. For more details, please refer to the [official documentation](https://huggingface.co/docs/datasets/en/about_dataset_features).\n", | ||
"\n", | ||
"<sup>*</sup> _Note that if the dataset features are consistent and all entries in your dataset table are non-null **for all splits of data**, you can skip this step._" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import datasets\n", | ||
"\n", | ||
"features = datasets.Features(\n", | ||
" {\n", | ||
" \"question_id\": datasets.Value(\"int64\"),\n", | ||
" \"question\": datasets.Value(\"string\"),\n", | ||
" \"image_id\": datasets.Value(\"string\"),\n", | ||
" \"image\": datasets.Image(),\n", | ||
" }\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define Data Generator\n", | ||
"\n", | ||
"We use [`datasets.Dataset.from_generator`](https://huggingface.co/docs/datasets/v2.20.0/en/package_reference/main_classes#datasets.Dataset.from_generator) to create the dataset.\n", | ||
"\n", | ||
"The generator function should `yield` dictionaries with the keys corresponding to the dataset features. This can save memory when loading large datasets.\n", | ||
"\n", | ||
"For the image data, we can convert the image to [`PIL.Image`](https://pillow.readthedocs.io/en/stable/reference/Image.html) object.\n", | ||
"\n", | ||
"Note that if some columns are missing in some splits of the dataset (for example, the `answer` column is usually missing in the `test` split), we need to set these columns to null to ensure that all splits have the same features." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import json\n", | ||
"from PIL import Image\n", | ||
"\n", | ||
"\n", | ||
"def generator(qa_file, image_folder, image_prefix):\n", | ||
" with open(qa_file, \"r\") as f:\n", | ||
" data = json.load(f)\n", | ||
" qa = data[\"questions\"]\n", | ||
"\n", | ||
" for q in qa:\n", | ||
" image_id = q[\"image_id\"]\n", | ||
" image_path = os.path.join(image_folder, f\"{image_prefix}_{image_id:012}.jpg\")\n", | ||
" q[\"image\"] = Image.open(image_path)\n", | ||
" yield q" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Generate Dataset\n", | ||
"\n", | ||
"We generate the dataset using the generator function.\n", | ||
"\n", | ||
"Note that if you skip the step of defining dataset features, there is no need to pass the `features` argument. The dataset infer the features from the dataset automatically." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"NUM_PROC = 32 # number of processes to use for multiprocessing, set to 1 for no multiprocessing\n", | ||
"\n", | ||
"data_val = datasets.Dataset.from_generator(\n", | ||
" generator,\n", | ||
" gen_kwargs={\n", | ||
" \"qa_file\": \"data/questions/vqav2_toy_questions_val2014.json\",\n", | ||
" \"image_folder\": \"data/images\",\n", | ||
" \"image_prefix\": \"COCO_val2014\",\n", | ||
" },\n", | ||
" # For this dataset, there is no need to specify the features, as all cells are non-null and all splits have the same schema\n", | ||
" # features=features,\n", | ||
" num_proc=NUM_PROC,\n", | ||
")\n", | ||
"\n", | ||
"data_test = datasets.Dataset.from_generator(\n", | ||
" generator,\n", | ||
" gen_kwargs={\n", | ||
" \"qa_file\": \"data/questions/vqav2_toy_questions_test2015.json\",\n", | ||
" \"image_folder\": \"data/images\",\n", | ||
" \"image_prefix\": \"COCO_test2015\",\n", | ||
" },\n", | ||
" # features=features,\n", | ||
" num_proc=NUM_PROC,\n", | ||
")\n", | ||
"\n", | ||
"data_test_dev = datasets.Dataset.from_generator(\n", | ||
" generator,\n", | ||
" gen_kwargs={\n", | ||
" \"qa_file\": \"data/questions/vqav2_toy_questions_test-dev2015.json\",\n", | ||
" \"image_folder\": \"data/images\",\n", | ||
" \"image_prefix\": \"COCO_test2015\",\n", | ||
" },\n", | ||
" # features=features,\n", | ||
" num_proc=NUM_PROC,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Dataset Upload\n", | ||
"\n", | ||
"Finally, we group the dataset with different splits and upload it to the Huggingface dataset hub." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = datasets.DatasetDict({\"val\": data_val, \"test\": data_test, \"test_dev\": data_test_dev})" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data.push_to_hub(\"lmms-lab/VQAv2_TOY\") # replace lmms-lab to your username" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Now, you can check the dataset on the [Hugging Face dataset hub](https://huggingface.co/datasets/lmms-lab/VQAv2_TOY)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "lmms-eval", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters