Skip to content

Latest commit

 

History

History
71 lines (52 loc) · 2.22 KB

README.md

File metadata and controls

71 lines (52 loc) · 2.22 KB

MGAE-DC

This is the implementation code of MGAE-DC, a deep learning framework for predicting the synergistic effects of drug combinations through multi-channel graph autoencoders.

the schematic of MGAE-DC

Requirements

Python 3.8 or higher
pandas 1.3.5 numpy 1.21.2 tensorflow 2.4.1

Datasets

  1. O'Neil dataset
  2. ALMANAC dataset
  3. CLOUD datset
  4. FORCINA datset

Training

###The embedding module python codes/get_oneil_mgaedc_representation.py -learning_rate 0.001 -epochs 10000 -embedding_dim 320 -drop_out 0.2 -weight_decay 0 -val_test_size 0.1
This script is used to extract the cell line-specific and common drug embeddings through multi-channel graph autoencoders in the embedding module.

Argument Default Description
learning_rate 0.001 Initial learning rate.
epochs 10000 The number of training epochs.
embedding_dim 320 The number of dimension for drug embeddings.
dropout 0.2 Dropout rate (1 - keep probability)
weight_decay 0 Weight for L2 loss on embedding matrix.
val_test_size 0.1 the rate of validation and test samples.

###The predictor module python codes/get_oneil_mgaedc.py -learning_rate 0.01 -epochs 500 -batch 320 -drop_out 0.2 -hidden 8192 -patience 100 This script is used to predict the synergistic effects of drug combinations in the predictore module.

Argument Default Description
learning_rate 0.01 Initial learning rate.
epochs 500 The number of training epochs.
batch 256 The nbatch size.
hidden 0.2 Dropout rate (1 - keep probability)
weight_decay 1024 (n, n/2, 1) The hidden size for NN.
patience 100 the patience for early stop.

###Predicting with pretrained model

The size of pretrained models are too large, so they are accessible with baidu netdisk links. 密码:bkri.

Reference

Please cite our work if you find our code/paper is useful to your work.

@article{Zhang, 
title={MGAE-DC: predicting the synergistic effects of drug combinations through multi-channel graph autoencoders}, 
author={Peng Zhang, Shikui Tu}, 
journal={}, 
volume={}, 
number={}, 
year={2022}, 
month={}, 
pages={} 
}