This is the implementation code of MGAE-DC, a deep learning framework for predicting the synergistic effects of drug combinations through multi-channel graph autoencoders.
Python 3.8 or higher
pandas 1.3.5
numpy 1.21.2
tensorflow 2.4.1
- O'Neil dataset
- ALMANAC dataset
- CLOUD datset
- FORCINA datset
###The embedding module
python codes/get_oneil_mgaedc_representation.py -learning_rate 0.001 -epochs 10000 -embedding_dim 320 -drop_out 0.2 -weight_decay 0 -val_test_size 0.1
This script is used to extract the cell line-specific and common drug embeddings through multi-channel graph autoencoders in the embedding module.
Argument | Default | Description |
---|---|---|
learning_rate | 0.001 | Initial learning rate. |
epochs | 10000 | The number of training epochs. |
embedding_dim | 320 | The number of dimension for drug embeddings. |
dropout | 0.2 | Dropout rate (1 - keep probability) |
weight_decay | 0 | Weight for L2 loss on embedding matrix. |
val_test_size | 0.1 | the rate of validation and test samples. |
###The predictor module python codes/get_oneil_mgaedc.py -learning_rate 0.01 -epochs 500 -batch 320 -drop_out 0.2 -hidden 8192 -patience 100 This script is used to predict the synergistic effects of drug combinations in the predictore module.
Argument | Default | Description |
---|---|---|
learning_rate | 0.01 | Initial learning rate. |
epochs | 500 | The number of training epochs. |
batch | 256 | The nbatch size. |
hidden | 0.2 | Dropout rate (1 - keep probability) |
weight_decay | 1024 | (n, n/2, 1) The hidden size for NN. |
patience | 100 | the patience for early stop. |
###Predicting with pretrained model
The size of pretrained models are too large, so they are accessible with baidu netdisk links. 密码:bkri.
Please cite our work if you find our code/paper is useful to your work.
@article{Zhang,
title={MGAE-DC: predicting the synergistic effects of drug combinations through multi-channel graph autoencoders},
author={Peng Zhang, Shikui Tu},
journal={},
volume={},
number={},
year={2022},
month={},
pages={}
}