Skip to content

Este proyecto analiza el clima en Perú, explorando datos históricos para identificar patrones en temperatura, humedad y precipitaciones. Utiliza Python, Pandas, Matplotlib y técnicas de web scraping y Machine Learning.

Notifications You must be signed in to change notification settings

Kev-1729/Climate_Analysis_Peru

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Extraction and Visualization of Peru's Climate Data using Web Scraping

Description

This software extracts and analyzes specific climate information for any department or region in Peru using web scraping. It utilizes the BeautifulSoup library, along with other tools, to collect meteorological data from the National Meteorology and Hydrology Service of Peru (SENAMHI).

Main Features

  • Real-Time Data Extraction: Users can input a location of interest and obtain the corresponding climate data.
  • Data Storage: The software saves collected data over time for future visualizations and analysis.
  • Automated Data Update: It ensures that stored data remains up-to-date while avoiding duplicates.
  • Graphical Representation: Includes visualizations for better interpretation of climate trends.

Main Functions

  • get_information(website): Makes an HTTP request to the specified website and retrieves the response.
  • main(): Performs web scraping to obtain climate data and stores it in a CSV file. It also prompts the user to enter a location for analysis.
  • update_data(d, file): Updates the CSV file, ensuring that the data remains accurate, up-to-date, and free of duplicates.
  • line_plot_graph(df, location): Generates a line plot to visualize temperature trends over time.
  • scatter_plot_graph(df, location): Creates a scatter plot representing temperature variations over time for a given location.

About

Este proyecto analiza el clima en Perú, explorando datos históricos para identificar patrones en temperatura, humedad y precipitaciones. Utiliza Python, Pandas, Matplotlib y técnicas de web scraping y Machine Learning.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages