Lightweight Contenders: Navigating Semi-Supervised Text Mining through Peer Collaboration and Self Transcendence (PS-NET)
This is the code of Lightweight Contenders: Navigating Semi-Supervised Text Mining through Peer Collaboration and Self Transcendence (PS-NET) with Pytorch.
- numpy
- torch
- transformers
- pyrouge
- rouge
- boto3
Run command below to install all the environment in need(using python3)
pip install -r requirements.txt
python src/train.py --task_name ${TASK_NAME}$ \
--student_num ${STUDENT_NUM}$ \
--config_name_or_path ${CONFIG_NAME_OR_PATH}$ \
--teacher_model ${TEACHER_MODEL}$ \
--num_training_steps ${NUM_TRAINING_STEPS}$ \
--cnndm_dataset_name ${CNNDM_DATASET_NAME}$ \
--glue_dataset_name ${GLUE_DATASET_NAME}$ \
--train_batch_size ${TRAIN_BATCH_SIZE}$ \
--test_batch_size ${TEST_BATCH_SIZE}$ \
--val_batch_size ${VAL_BATCH_SIZE}$ \
--student_promotion_lr ${STUDENT_PROMOTION_LR}$ \
--student_distill_lr ${STUDENT_DISTILL_LR}$ \
--student_mutual_lr ${STUDENT_MUTUAL_LR}$ \
--teacher_lr ${TEACHER_LR}$ \
--lambdau ${LAMBDAU}$ \
--rampup_rate ${RAMPUP_RATE}$ \
--belittle ${BELITTLE}$ \
All the example scripts can be found in script