Skip to content

LiteSSLHub/PSNET

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lightweight Contenders: Navigating Semi-Supervised Text Mining through Peer Collaboration and Self Transcendence (PS-NET)

This is the code of Lightweight Contenders: Navigating Semi-Supervised Text Mining through Peer Collaboration and Self Transcendence (PS-NET) with Pytorch.

Environment Configuration

  • numpy
  • torch
  • transformers
  • pyrouge
  • rouge
  • boto3

Run command below to install all the environment in need(using python3)

pip install -r requirements.txt

Usage

python src/train.py --task_name ${TASK_NAME}$ \
                    --student_num ${STUDENT_NUM}$ \
                    --config_name_or_path ${CONFIG_NAME_OR_PATH}$ \
                    --teacher_model ${TEACHER_MODEL}$ \
                    --num_training_steps ${NUM_TRAINING_STEPS}$ \
                    --cnndm_dataset_name ${CNNDM_DATASET_NAME}$ \
                    --glue_dataset_name ${GLUE_DATASET_NAME}$ \
                    --train_batch_size ${TRAIN_BATCH_SIZE}$ \
                    --test_batch_size ${TEST_BATCH_SIZE}$ \
                    --val_batch_size ${VAL_BATCH_SIZE}$ \
                    --student_promotion_lr ${STUDENT_PROMOTION_LR}$ \
                    --student_distill_lr ${STUDENT_DISTILL_LR}$ \
                    --student_mutual_lr ${STUDENT_MUTUAL_LR}$ \
                    --teacher_lr ${TEACHER_LR}$ \
                    --lambdau ${LAMBDAU}$ \
                    --rampup_rate ${RAMPUP_RATE}$ \
                    --belittle ${BELITTLE}$ \

All the example scripts can be found in script

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published