Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update TensorRT-LLM #1918

Merged
merged 1 commit into from
Jul 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 35 additions & 10 deletions benchmarks/cpp/gptManagerBenchmark.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -172,16 +172,16 @@ struct BenchmarkParams
std::optional<std::vector<std::vector<SizeType32>>> medusaChoices;
};

class InferenceRequestsSyncSend
class InferenceRequestsAsyncSend
{
public:
InferenceRequestsSyncSend(std::shared_ptr<tensorrt_llm::mpi::MpiComm> comm,
InferenceRequestsAsyncSend(std::shared_ptr<tensorrt_llm::mpi::MpiComm> comm,
std::list<std::shared_ptr<InferenceRequest>> const& inferenceRequests, int const peer)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_LOG_DEBUG("start send requests to rank %d", peer);
mNumNewWorkItems = static_cast<int64_t>(inferenceRequests.size());
comm->send(&mNumNewWorkItems, 1, mpi::MpiType::kINT64, peer, 0);
mRequest1 = comm->sendAsync(&mNumNewWorkItems, 1, mpi::MpiType::kINT64, peer, 0);
if (mNumNewWorkItems > 0)
{
for (auto const& infReq : inferenceRequests)
Expand All @@ -191,16 +191,31 @@ class InferenceRequestsSyncSend
mPacked.insert(mPacked.end(), std::move_iterator(vpacked.begin()), std::move_iterator(vpacked.end()));
}
mVecSize = static_cast<int64_t>(mPacked.size());
comm->send(&mVecSize, 1, mpi::MpiType::kINT64, peer, 1);
comm->send(mPacked.data(), mPacked.size(), mpi::MpiType::kINT64, peer, 2);
mRequest2 = comm->sendAsync(&mVecSize, 1, mpi::MpiType::kINT64, peer, 1);
mRequest3 = comm->sendAsync(mPacked.data(), mPacked.size(), mpi::MpiType::kINT64, peer, 2);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}

~InferenceRequestsAsyncSend()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mRequest1->wait();
if (mRequest2)
mRequest2->wait();
if (mRequest3)
mRequest3->wait();
TLLM_LOG_DEBUG("end send requests");
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}

private:
int64_t mNumNewWorkItems;
int64_t mVecSize;
std::vector<int64_t> mPacked;
std::shared_ptr<tensorrt_llm::mpi::MpiRequest> mRequest1;
std::shared_ptr<tensorrt_llm::mpi::MpiRequest> mRequest2;
std::shared_ptr<tensorrt_llm::mpi::MpiRequest> mRequest3;
};
} // namespace

Expand Down Expand Up @@ -930,7 +945,6 @@ class GptServer
, mStaticEmulatedBatchSize(staticEmulatedBatchSize)
, mBatchTimeout(batchTimeout.value_or(std::chrono::milliseconds{0}))
, mActiveCount(0)
, mInferReqSyncSndHdl(nullptr)
{
auto const jsonConfig = GptJsonConfig::parse(trtEnginePath / "config.json");
mWorldConfig = WorldConfig::mpi(jsonConfig.getGpusPerNode(), jsonConfig.getTensorParallelism(),
Expand Down Expand Up @@ -966,6 +980,12 @@ class GptServer

~GptServer()
{
if (mInferReqWaitThread)
{
mInferReqWaitThread->join();
mInferReqWaitThread.reset(nullptr);
}

mWorkItemsQueue.clear();
}

Expand Down Expand Up @@ -1031,7 +1051,11 @@ class GptServer
// Return up to max_num_requests inference requests.
std::list<std::shared_ptr<InferenceRequest>> getInferenceRequests(int const max_num_requests)
{
mInferReqSyncSndHdl = nullptr;
if (mInferReqWaitThread)
{
mInferReqWaitThread->join();
mInferReqWaitThread.reset(nullptr);
}
std::list<std::shared_ptr<InferenceRequest>> inferenceRequests;
auto& comm = COMM_SESSION;
if (max_num_requests > 0)
Expand Down Expand Up @@ -1134,8 +1158,9 @@ class GptServer
if (!mWorldConfig.isLastPipelineParallelRank())
{
auto const peer = mWorldConfig.getPipelineParallelRank() + 1;
mInferReqSyncSndHdl
= std::make_shared<InferenceRequestsSyncSend>(mCommPipelineParallel, inferenceRequests, peer);
auto inferReqAsyncSndHdl
= std::make_unique<InferenceRequestsAsyncSend>(mCommPipelineParallel, inferenceRequests, peer);
mInferReqWaitThread = std::make_unique<std::thread>([handle = std::move(inferReqAsyncSndHdl)]() {});
}
}
return inferenceRequests;
Expand Down Expand Up @@ -1184,7 +1209,7 @@ class GptServer
WorldConfig mWorldConfig;
std::shared_ptr<tensorrt_llm::mpi::MpiComm> mCommTensorParallel;
std::shared_ptr<tensorrt_llm::mpi::MpiComm> mCommPipelineParallel;
std::shared_ptr<InferenceRequestsSyncSend> mInferReqSyncSndHdl;
std::unique_ptr<std::thread> mInferReqWaitThread;

}; // class GptServer

Expand Down
66 changes: 65 additions & 1 deletion benchmarks/python/allowed_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,14 +60,20 @@ class BuildConfig:
parallel_attention: bool = None
new_decoder_architecture: bool = None
state_size: int = 0
state_dtype: Optional[str] = None
state_dtype: Optional[str] = ""
conv_kernel: int = 0
layer_types: List[str] = field(default_factory=list)
rnn_hidden_size: int = 0
rnn_head_size: int = 0
rnn_conv_dim_size: int = 0
logits_soft_cap: float = 0.0
opt_batch_size: Optional[int] = None
opt_num_tokens: Optional[int] = None
use_bias: bool = None
mamba_version: str = 'Mamba1'
ssm_rmsnorm: bool = True
ngroups: int = 1
chunk_size: int = 256


@dataclass
Expand Down Expand Up @@ -1218,6 +1224,7 @@ class ModelConfig:
state_size=16,
conv_kernel=4,
rnn_hidden_size=5120,
rnn_conv_dim_size=5120,
layer_types=["recurrent"],
use_bias=False,
)),
Expand All @@ -1238,6 +1245,7 @@ class ModelConfig:
state_size=16,
conv_kernel=4,
rnn_hidden_size=4096,
rnn_conv_dim_size=4096,
layer_types=["recurrent"],
use_bias=False,
)),
Expand All @@ -1258,6 +1266,7 @@ class ModelConfig:
state_size=16,
conv_kernel=4,
rnn_hidden_size=3072,
rnn_conv_dim_size=3072,
layer_types=["recurrent"],
use_bias=False,
)),
Expand All @@ -1278,6 +1287,7 @@ class ModelConfig:
state_size=16,
conv_kernel=4,
rnn_hidden_size=2048,
rnn_conv_dim_size=2048,
layer_types=["recurrent"],
use_bias=False,
)),
Expand All @@ -1298,9 +1308,62 @@ class ModelConfig:
state_size=16,
conv_kernel=4,
rnn_hidden_size=1536,
rnn_conv_dim_size=1536,
layer_types=["recurrent"],
use_bias=False,
)),
"mamba2_2.7b":
ModelConfig(name="mamba2_2.7b",
family="mamba",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=64,
num_heads=1,
hidden_size=2560,
vocab_size=50288,
hidden_act="silu",
n_positions=8192,
max_batch_size=64,
max_input_len=1024,
max_seq_len=2048,
state_size=128,
conv_kernel=4,
rnn_hidden_size=5120,
rnn_conv_dim_size=5376,
rnn_head_size=64,
layer_types=["recurrent"],
use_bias=False,
mamba_version='Mamba2',
ssm_rmsnorm=True,
ngroups=1,
chunk_size=256,
)),
"mamba2_130m":
ModelConfig(name="mamba2_130m",
family="mamba",
benchmark_type="gpt",
build_config=BuildConfig(
num_layers=24,
num_heads=1,
hidden_size=768,
vocab_size=50288,
hidden_act="silu",
n_positions=8192,
max_batch_size=64,
max_input_len=1024,
max_seq_len=2048,
state_size=128,
conv_kernel=4,
rnn_hidden_size=1536,
rnn_conv_dim_size=1792,
rnn_head_size=64,
layer_types=["recurrent"],
use_bias=False,
mamba_version='Mamba2',
ssm_rmsnorm=True,
ngroups=1,
chunk_size=256,
)),
"whisper_large_v3":
ModelConfig(name="whisper_large_v3",
family="whisper",
Expand Down Expand Up @@ -1344,6 +1407,7 @@ class ModelConfig:
state_size=1,
layer_types=["recurrent", "recurrent", "attention"],
rnn_hidden_size=2560,
rnn_conv_dim_size=2560,
logits_soft_cap=30.0,
state_dtype="float32",
)),
Expand Down
11 changes: 10 additions & 1 deletion benchmarks/python/build.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,8 @@ def build_gpt(args):
builder_config_extra_kwargs = {}
extra_items = [
'layer_types', 'conv_kernel', 'rnn_hidden_size', 'logits_soft_cap',
'state_size', 'use_bias'
'state_size', 'use_bias', 'rnn_head_size', 'rnn_conv_dim_size',
'mamba_version', 'ssm_rmsnorm', 'ngroups', 'chunk_size'
]
for item in extra_items:
if item in build_config:
Expand Down Expand Up @@ -876,10 +877,16 @@ def build_gpt(args):
'state_size': build_config['state_size'],
'conv_kernel': build_config['conv_kernel'],
'rnn_hidden_size': build_config['rnn_hidden_size'],
'rnn_head_size': build_config['rnn_head_size'],
'rnn_conv_dim_size': build_config['rnn_conv_dim_size'],
'rms_norm': True,
'residual_in_fp32': True,
'pad_vocab_size_multiple': 8,
'use_bias': build_config['use_bias'],
'mamba_version': build_config['mamba_version'],
'ssm_rmsnorm': build_config['ssm_rmsnorm'],
'ngroups': build_config['ngroups'],
'chunk_size': build_config['chunk_size'],
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.MambaForCausalLM(config)
Expand Down Expand Up @@ -912,6 +919,8 @@ def build_gpt(args):
'state_size': build_config['state_size'],
'layer_types': build_config['layer_types'],
'rnn_hidden_size': build_config['rnn_hidden_size'],
'rnn_head_size': build_config['rnn_head_size'],
'rnn_conv_dim_size': build_config['rnn_conv_dim_size'],
'logits_soft_cap': build_config['logits_soft_cap'],
'rotary_pct': build_config['rotary_pct'],
}
Expand Down
2 changes: 1 addition & 1 deletion benchmarks/python/gpt_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ def __init__(self, args, batch_sizes, in_out_lens, gpu_weights_percents,

rnn_config_items = [
'conv_kernel', 'layer_types', 'rnn_hidden_size', 'state_size',
'state_dtype'
'state_dtype', 'rnn_head_size', 'rnn_conv_dim_size'
]
rnn_configs_kwargs = {}
for item in rnn_config_items:
Expand Down
10 changes: 5 additions & 5 deletions cpp/include/tensorrt_llm/batch_manager/inferenceRequest.h
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ class GenericInferenceRequest
uint64_t requestId, std::optional<LogitsPostProcessor> logitsPostProcessor = std::nullopt)
: mRequestId{requestId}
, mIsStreaming{false}
, mlogitsPostProcessor(logitsPostProcessor)
, mLogitsPostProcessor(logitsPostProcessor)
{
}

Expand All @@ -125,7 +125,7 @@ class GenericInferenceRequest
: mRequestId{requestId}
, mIsStreaming{false}
, mInputTensors{std::move(tensorMap)}
, mlogitsPostProcessor(logitsPostProcessor)
, mLogitsPostProcessor(logitsPostProcessor)
{
for (auto const& [name, tensor] : mInputTensors)
{
Expand Down Expand Up @@ -161,12 +161,12 @@ class GenericInferenceRequest

void setLogitsPostProcessor(std::optional<LogitsPostProcessor> cb)
{
mlogitsPostProcessor = cb;
mLogitsPostProcessor = cb;
}

std::optional<LogitsPostProcessor> getLogitsPostProcessor()
{
return mlogitsPostProcessor;
return mLogitsPostProcessor;
}

static std::array constexpr kTensorNames = {
Expand Down Expand Up @@ -280,7 +280,7 @@ class GenericInferenceRequest
uint64_t mRequestId;
bool mIsStreaming;
TensorMap mInputTensors;
std::optional<LogitsPostProcessor> mlogitsPostProcessor;
std::optional<LogitsPostProcessor> mLogitsPostProcessor;
};

class InferenceRequest : public GenericInferenceRequest<tensorrt_llm::runtime::ITensor::SharedPtr, NamedTensor>
Expand Down
30 changes: 5 additions & 25 deletions cpp/include/tensorrt_llm/batch_manager/kvCacheManager.h
Original file line number Diff line number Diff line change
Expand Up @@ -248,16 +248,6 @@ class GenerationRequest
}
}

void setNumPrepopulatedTokens(std::vector<int> numPrepopulatedTokens)
{
mNumPrepopulatedTokens = std::move(numPrepopulatedTokens);
}

[[nodiscard]] std::vector<int> const& getNumPrepopulatedTokens() const
{
return mNumPrepopulatedTokens;
}

private:
// Slot id of the sequence
SizeType32 mSeqSlotIdx;
Expand All @@ -267,10 +257,6 @@ class GenerationRequest
SizeType32 mBeamWidth;
// List of blocks allocated for each beam of the sequence
std::vector<std::vector<KVCacheBlock::IdType>> mCacheBlockIds;
// Number of tokens already in kv cache before context phase.
// A value > 0 indicates cached kv cache blocks were reused.
// One value per beam.
std::vector<int> mNumPrepopulatedTokens;
};

// BlockManager manages overall metadata of KVCacheBlocks in a layer of the
Expand Down Expand Up @@ -400,7 +386,10 @@ class BlockManager

private:
//! \brief Add single block to beam of sequence and mAllocatedBlocksPerSeq.
void addBlockToBeam(BlockPtr& block, GenerationRequest& sequence, SizeType32 beamIdx, SizeType32 seqSlotIdx);
void addBlockToBeam(BlockPtr& block, GenerationRequest& sequence, SizeType32 beamIdx);

//! \brief Add single block to all beams of sequence.
void addBlockToAllBeams(BlockPtr& block, GenerationRequest& sequence);

//! \brief Store blocks in cached blocks.
//! \param blockedTokens Tokens of each block.
Expand All @@ -410,11 +399,8 @@ class BlockManager
//! \brief Try to load blocks from cache. Allocate new blocks if necessary.
//! \param blockedTokens Tokens of each block.
//! \param sequence Sequence to which blocks are assigned.
//! \param beamIdx Beam of sequence to which blocks are assigned.
//! \param seqSlotIdx Batch slot of sequence to which blocks are assigned.
//! \return Number of matched tokens from loaded blocks.
SizeType32 loadOrAllocateBlocks(std::list<VecTokens> const& blockedTokens, GenerationRequest& sequence,
SizeType32 beamIdx, SizeType32 seqSlotIdx);
SizeType32 loadOrAllocateBlocks(std::list<VecTokens> const& blockedTokens, GenerationRequest& sequence);

//! \brief Find best primary block to free.
//! \details The best primary block to free is the primary block that appears first in the queue and have no primary
Expand Down Expand Up @@ -598,12 +584,6 @@ class KVCacheManager
nvinfer1::DataType dtype, tensorrt_llm::runtime::ModelConfig const& modelConfig,
tensorrt_llm::runtime::WorldConfig const& worldConfig, runtime::BufferManager const& bufferManager);

[[nodiscard]] SizeType32 getNumPrepopulatedTokens(SizeType32 batchSlotIdx, SizeType32 beamIdx) const
{
auto const& prepopulatedTokens = mSequences.at(batchSlotIdx)->getNumPrepopulatedTokens();
return prepopulatedTokens.size() > 0 ? prepopulatedTokens.at(beamIdx) : 0;
}

[[nodiscard]] bool isEnableBlockReuse() const
{
return mEnableBlockReuse;
Expand Down
Loading