Skip to content

Commit

Permalink
support fp16
Browse files Browse the repository at this point in the history
  • Loading branch information
GuoxiaWang committed Sep 20, 2021
1 parent 8668519 commit 91f8350
Show file tree
Hide file tree
Showing 4 changed files with 56 additions and 29 deletions.
4 changes: 4 additions & 0 deletions paddle/fluid/operators/elementwise/elementwise_max_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,16 @@ namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, int>,
Expand Down
4 changes: 2 additions & 2 deletions paddle/fluid/operators/elementwise/elementwise_max_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,14 +39,14 @@ class ElementwiseMaxKernel : public framework::OpKernel<T> {
template <typename T>
struct MaxGradDx {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x > y);
return dout * static_cast<T>(x > y);
}
};

template <typename T>
struct MaxGradDy {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x <= y);
return dout * static_cast<T>(x <= y);
}
};

Expand Down
74 changes: 48 additions & 26 deletions paddle/fluid/operators/p_norm_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,9 @@ limitations under the License. */
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/p_norm_op.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {
Expand All @@ -30,12 +32,23 @@ __device__ __forceinline__ int sgn(T val) {
return (T(0) < val) - (val < T(0));
}

__device__ __forceinline__ platform::float16 inline_abs(platform::float16 x) {
return static_cast<platform::float16>(abs(static_cast<float>(x)));
}
__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

__device__ __forceinline__ int inline_sign(platform::float16 x) {
return sgn<platform::float16>(x);
}
__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

__device__ __forceinline__ platform::float16 inline_pow(
platform::float16 base, platform::float16 exponent) {
return static_cast<platform::float16>(
pow(static_cast<float>(base), static_cast<float>(exponent)));
}
__device__ __forceinline__ float inline_pow(float base, float exponent) {
return pow(base, exponent);
}
Expand All @@ -47,40 +60,43 @@ template <typename T, int BlockDim>
__global__ void Pnorm(const T* x, const int pre,
const int axis_n, // dim in axis
const int post, float porder, T* out_norm) {
typedef cub::BlockReduce<T, BlockDim> BlockReduce;
using MT = typename details::MPTypeTrait<T>::Type;
typedef cub::BlockReduce<MT, BlockDim> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int num = pre * post;
auto porder_t = static_cast<T>(porder);
auto porder_inv = static_cast<T>(1.0 / porder);
auto porder_t = static_cast<MT>(porder);
auto porder_inv = static_cast<MT>(1.0 / porder);

for (int i = blockIdx.x; i < num; i += gridDim.x) {
int base = (i / post) * post * axis_n + (i % post);
T sum = 0.0;
MT sum = static_cast<MT>(0.0);
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
const T x_ij = x[base + j * post];
const MT x_ij = static_cast<MT>(x[base + j * post]);
sum += inline_pow(inline_abs(x_ij), porder_t);
}
T reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0) out_norm[i] = inline_pow(reduce_result, porder_inv);
MT reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0)
out_norm[i] = static_cast<T>(inline_pow(reduce_result, porder_inv));
}
}

template <typename T, int BlockDim>
__global__ void ZeorNorm(const T* x, const int pre,
const int axis_n, // dim in axis
const int post, T* out_norm) {
typedef cub::BlockReduce<T, BlockDim> BlockReduce;
using MT = typename details::MPTypeTrait<T>::Type;
typedef cub::BlockReduce<MT, BlockDim> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int num = pre * post;
for (int i = blockIdx.x; i < num; i += gridDim.x) {
int base = (i / post) * post * axis_n + (i % post);
T sum = 0.0;
MT sum = static_cast<MT>(0.0);
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
const T x_ij = x[base + j * post];
sum += static_cast<T>(x_ij != 0);
const MT x_ij = static_cast<MT>(x[base + j * post]);
sum += static_cast<MT>(static_cast<double>(x_ij) != 0);
}
T reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0) out_norm[i] = reduce_result;
MT reduce_result = BlockReduce(temp_storage).Sum(sum);
if (threadIdx.x == 0) out_norm[i] = static_cast<T>(reduce_result);
}
}

Expand Down Expand Up @@ -172,27 +188,29 @@ __global__ void PnormGradient(const T* x, const T* x_norm, const T* y_grad,
const float porder, const int pre,
const int axis_n, const int post, const T eps,
T* x_grad) {
using MT = typename details::MPTypeTrait<T>::Type;
// dx = (x/pnorm_broadcast).pow(p-1) * norm_dy.broadcast * sign(x)
int num = pre * post;
auto porder_grad = static_cast<T>(porder - 1.0f);
auto porder_grad = static_cast<MT>(porder - 1.0f);
for (int i = blockIdx.x; i < num; i += gridDim.x) {
__shared__ T pnorm_i;
__shared__ T yout_i;
__shared__ MT pnorm_i;
__shared__ MT yout_i;

auto base = (i / post) * post * axis_n + (i % post);

if (threadIdx.x == 0) {
pnorm_i = x_norm[i];
yout_i = y_grad[i];
pnorm_i = static_cast<MT>(x_norm[i]);
yout_i = static_cast<MT>(y_grad[i]);
}
__syncthreads();

for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
int index = base + j * post;
const T x_ij = inline_abs(x[index]);
x_grad[index] = inline_pow(x_ij, porder_grad) /
(inline_pow(pnorm_i, porder_grad) + eps) * yout_i *
inline_sign(x[index]);
const MT x_ij = static_cast<MT>(inline_abs(x[index]));
x_grad[index] = static_cast<T>(
inline_pow(x_ij, porder_grad) /
(inline_pow(pnorm_i, porder_grad) + static_cast<MT>(eps)) * yout_i *
static_cast<MT>(inline_sign(x[index])));
}
}
}
Expand All @@ -216,7 +234,7 @@ __global__ void InfNormGradient(const T* x, const T* x_norm, const T* y_grad,
int index = base + j * post;
const T x_ij = inline_abs(x[index]);
if (x_ij == pnorm_i) {
x_grad[index] = inline_sign(x[index]) * yout_i;
x_grad[index] = static_cast<T>(inline_sign(x[index])) * yout_i;
} else {
x_grad[index] = static_cast<T>(0);
}
Expand Down Expand Up @@ -278,7 +296,11 @@ class PnormGradCUDAKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(p_norm, ops::PnormCUDAKernel<CUDA, float>,
REGISTER_OP_CUDA_KERNEL(p_norm,
ops::PnormCUDAKernel<CUDA, paddle::platform::float16>,
ops::PnormCUDAKernel<CUDA, float>,
ops::PnormCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(p_norm_grad, ops::PnormGradCUDAKernel<CUDA, float>,
ops::PnormGradCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(
p_norm_grad, ops::PnormGradCUDAKernel<CUDA, paddle::platform::float16>,
ops::PnormGradCUDAKernel<CUDA, float>,
ops::PnormGradCUDAKernel<CUDA, double>);
3 changes: 2 additions & 1 deletion python/paddle/nn/functional/norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,8 @@ def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):

check_type(p, 'p', (float, int), 'normalize')
check_type(axis, 'axis', (int), 'normalize')
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'normalize')
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
'normalize')
if len(x.shape) == 1 and axis != 0 and axis != -1:
raise ValueError(
"Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".
Expand Down

1 comment on commit 91f8350

@paddle-bot-old
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Congratulation! Your pull request passed all required CI. You could ask reviewer(s) to approve and merge. 🎉

Please sign in to comment.