Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PaddlePaddle Hackathon】1、在 Paddle 中新增 AdaptiveLogSoftmaxWithLoss #37024

Closed
wants to merge 12 commits into from
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F


class TestNNAdaptiveLogSoftmaxWithLossAPI(unittest.TestCase):
def setUp(self):
paddle.disable_static()

def test_error(self):
# args validation
with self.assertRaises(ValueError):
_ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 15, 15], div_value=2.)

with self.assertRaises(ValueError):
_ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 15, 10], div_value=2.)

with self.assertRaises(ValueError):
_ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 25], div_value=2.)

with self.assertRaisesRegex(ValueError,
"cutoffs should be a sequence of unique,"):
_ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 20], div_value=2.)
# not raise
_ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 19], div_value=2.)

def test_shape(self):
# input shapes
with self.assertRaisesRegex(
RuntimeError, r"Input and target should have the same size"):
asfm = nn.AdaptiveLogSoftmaxWithLoss(
16, 20, [5, 10, 15], div_value=2.)
x = paddle.randn((2, 16))
y = paddle.to_tensor([0, 5, 10])
asfm(x, y)

# out-of-bound targets
with self.assertRaisesRegex(RuntimeError,
r"Target values should be in"):
asfm = nn.AdaptiveLogSoftmaxWithLoss(
16, 20, [5, 10, 15], div_value=2.)
x = paddle.randn((128, 16))
y = paddle.randint(low=21, high=200, shape=[128])
asfm(x, y)

def test_cluster(self):
# cluster sizes
asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.)
x = paddle.randn((128, 16))
y = paddle.randint(low=0, high=20, shape=[128])

self.assertEqual(
asfm.head.weight.shape,
[16, 5 + 3]) # 5 targets in head, 3 clusters, dimensionality 16
self.assertEqual(asfm.tail[0][1].weight.shape,
[8, 5]) # 5 targets in this cluster, dimensionality 8
self.assertEqual(asfm.tail[1][1].weight.shape, [4, 5])
self.assertEqual(asfm.tail[2][1].weight.shape, [2, 5])

self.assertEqual(asfm(x, y).output.shape, [128])

def test_log_probs(self):
# log_probs actually returns log_proba
asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 4, [2], div_value=2.)
x = paddle.randn((4, 8))
logprob_out = asfm.log_prob(x)
np.testing.assert_array_almost_equal(
paddle.exp(logprob_out).sum(1), paddle.ones([4]))

# forward returns the same thing as log_probs
for v in [0, 1, 2, 3]:
y = paddle.full((4, ), v, dtype='int64')
out, loss = asfm(x, y)
np.testing.assert_array_almost_equal(
out,
logprob_out.gather(y.unsqueeze(1), 1).slice([1], [0],
[1]).squeeze())
np.testing.assert_array_almost_equal(loss,
F.nll_loss(logprob_out, y))

def test_correct(self):
# predict
x = paddle.abs(paddle.randn((64, 8)))

# argmax in shortlist
asfm = nn.AdaptiveLogSoftmaxWithLoss(
8, 10, [4, 8], div_value=2., head_bias=True)
asfm.head.weight.detach().abs()
asfm.head.bias.detach().abs()
asfm.head.weight.detach()[asfm.shortlist_size:, :] *= 0.

out = asfm.predict(x)
np.testing.assert_array_almost_equal(
out, asfm.log_prob(x).argmax(axis=1))

# argmax outside of shortlist
asfm = nn.AdaptiveLogSoftmaxWithLoss(
8, 10, [4, 8], div_value=2., head_bias=True)
asfm.head.weight.detach().abs()
Copy link
Contributor

@zhiboniu zhiboniu Dec 10, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

参考上面两个对话,你当前还是没有能验证实现的正确性。
以test_linear.py为例,可以按如下步骤完成:
1)固定可学习参数权重值为1。
2)获得模型推理结果概率分布,不仅仅是argmax值。
3)使用numpy实现推理公式。
4)使用同一个随机输入验证paddle输出概率分布与numpy计算结果相同。

asfm.head.bias.detach().abs()
asfm.head.weight.detach()[:asfm.shortlist_size, :] *= 0.

out = asfm.predict(x)
np.testing.assert_array_almost_equal(
out, asfm.log_prob(x).argmax(axis=1))

# half of the argmax in shortlist, half in clusters
asfm = nn.AdaptiveLogSoftmaxWithLoss(
8, 10, [4, 8], div_value=2., head_bias=True)
asfm.head.weight.detach().abs()
asfm.head.bias.detach().abs()

x[:32, :asfm.shortlist_size] *= 0.
x[32:, asfm.shortlist_size:] *= 0.

asfm.head.weight.detach()[:asfm.shortlist_size,
asfm.shortlist_size:] *= 0.
asfm.head.weight.detach()[asfm.shortlist_size:, :
asfm.shortlist_size] *= 0.

out = asfm.predict(x)
np.testing.assert_array_almost_equal(
out, asfm.log_prob(x).argmax(axis=1))


if __name__ == "__main__":
unittest.main()
2 changes: 2 additions & 0 deletions python/paddle/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@
from .layer.conv import Conv2DTranspose # noqa: F401
from .layer.conv import Conv3DTranspose # noqa: F401

from .layer.loss import AdaptiveLogSoftmaxWithLoss # noqa: F401
from .layer.loss import BCEWithLogitsLoss # noqa: F401
from .layer.loss import CrossEntropyLoss # noqa: F401
from .layer.loss import HSigmoidLoss # noqa: F401
Expand Down Expand Up @@ -276,6 +277,7 @@ def weight_norm(*args):
'Conv3DTranspose',
'Flatten',
'AdaptiveAvgPool1D',
'AdaptiveLogSoftmaxWithLoss',
'Tanhshrink',
'HSigmoidLoss',
'PReLU',
Expand Down
1 change: 1 addition & 0 deletions python/paddle/nn/layer/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
from .pooling import AdaptiveMaxPool2D # noqa: F401
from .pooling import AdaptiveMaxPool3D # noqa: F401
from .pooling import MaxUnPool2D # noqa: F401
from .loss import AdaptiveLogSoftmaxWithLoss # noqa: F401
from .conv import Conv1D # noqa: F401
from .conv import Conv2D # noqa: F401
from .conv import Conv3D # noqa: F401
Expand Down
Loading