Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bug caused by split infershape #40116

Merged
merged 3 commits into from
Mar 4, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 47 additions & 5 deletions paddle/fluid/operators/split_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,52 @@ class SplitOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Input(X) of SplitOp should not be null."));
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
platform::errors::InvalidArgument(
"Outputs(Out) of SplitOp should not be empty."));
auto in_dims = ctx->GetInputDim("X");
auto outs_names = ctx->Outputs("Out");
size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
std::vector<int> sections = static_cast<std::vector<int>>(
ctx->Attrs().Get<std::vector<int>>("sections"));
const size_t outs_number = outs_names.size();

if (sections.size() > 0) {
PADDLE_ENFORCE_EQ(
sections.size(), outs_number,
platform::errors::InvalidArgument("tensor split sections size "
"should be equal to output size."));
}

if (ctx->HasInput("AxisTensor")) {
auto out_dims = phi::make_ddim(std::vector<int>(in_dims.size(), -1));
std::vector<framework::DDim> outs_dims(outs_number, out_dims);
ctx->SetOutputsDim("Out", outs_dims);
for (size_t i = 0; i < outs_number; ++i) {
ctx->ShareLoD("X", "Out", 0, i);
}
return;
}

bool each_section_is_known =
(sections.size() > 0 && !ctx->HasInputs("SectionsTensorList"));

auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known,
in_dims, num, sections, axis, outs_number);
ctx->SetOutputsDim("Out", outs_dims);
if (axis != 0) {
// Only pass LoD when not spliting along the first dim.
for (size_t i = 0; i < outs_number; ++i) {
ctx->ShareLoD("X", "Out", 0, i);
}
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
Expand Down Expand Up @@ -125,10 +171,6 @@ This operator splits the input tensor into multiple sub-tensors.

namespace ops = paddle::operators;

DELCARE_INFER_SHAPE_FUNCTOR(split, SplitInferShapeFunctor,
PT_INFER_META(phi::SplitInferMeta));

REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker,
ops::SplitGradMaker<paddle::framework::OpDesc>,
ops::SplitGradMaker<paddle::imperative::OpBase>,
SplitInferShapeFunctor);
ops::SplitGradMaker<paddle::imperative::OpBase>);
80 changes: 36 additions & 44 deletions paddle/phi/infermeta/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -508,17 +508,6 @@ void SplitInferMeta(const MetaTensor& x,
const Scalar& axis,
std::vector<MetaTensor*> out,
MetaConfig config) {
if (!config.is_runtime) {
if (axis.FromTensor() || num_or_sections.FromTensor()) {
auto out_dims = phi::make_ddim(std::vector<int>(x.dims().size(), -1));
for (auto* item : out) {
item->set_dims(out_dims);
item->share_lod(x);
}
return;
}
}

int axis_value = axis.to<int>();
int rank = x.dims().size();
PADDLE_ENFORCE_EQ(
Expand All @@ -533,44 +522,38 @@ void SplitInferMeta(const MetaTensor& x,
axis_value = axis_value + rank;
}

std::vector<phi::DDim> out_dims(out.size(), x.dims());

auto input_axis_dim = x.dims().at(axis_value);
auto num_or_sections_data = num_or_sections.GetData();
// step1: get formated sections
std::vector<int64_t> sections;
// num_or_sections is a number
if (num_or_sections_data.size() == 1) {
if (config.is_runtime || input_axis_dim > 0) {
int num = num_or_sections_data.at(0);
PADDLE_ENFORCE_EQ(
input_axis_dim % num,
0,
phi::errors::InvalidArgument(
"The input's size along the split dimension "
"must be evenly divisible by Attr(num_or_sections). "
"But received Attr(num_or_sections) "
"= %d, input(X)'s shape = [%s], Attr(dim) = %d.",
num,
x.dims(),
axis_value));
int num = num_or_sections_data.at(0);

size_t out_axis_dim = input_axis_dim / num;
for (auto& out_dim : out_dims) {
out_dim[axis_value] = out_axis_dim;
}
} else {
for (auto& out_dim : out_dims) {
out_dim[axis_value] = -1;
}
PADDLE_ENFORCE_EQ(input_axis_dim % num,
0,
phi::errors::InvalidArgument(
"The input's size along the split dimension "
"must be evenly divisible by Attr(num_or_sections). "
"But received Attr(num_or_sections) "
"= %d, input(X)'s shape = [%s], Attr(dim) = %d.",
num,
x.dims(),
axis_value));

for (int i = 0; i < num; ++i) {
sections.push_back(input_axis_dim / num);
}
} else {
// num_or_sections is a sections
const int unknow_dim_val = -1;
int unknow_dim_idx = -1;
int num_of_unknow = 0;
int sum_of_section = 0;
std::vector<int64_t> sections = num_or_sections_data;

for (size_t i = 0; i < num_or_sections_data.size(); ++i) {
sections.push_back(num_or_sections_data[i]);

if (num_or_sections_data[i] == unknow_dim_val) {
num_of_unknow++;
unknow_dim_idx = i;
Expand Down Expand Up @@ -622,22 +605,31 @@ void SplitInferMeta(const MetaTensor& x,
x.dims(),
axis_value));
}
for (size_t i = 0; i < out_dims.size(); ++i) {
}

// setp2: fill out dims
std::vector<phi::DDim> out_dims(sections.size(), x.dims());
if (config.is_runtime || input_axis_dim > 0) {
for (size_t i = 0; i < sections.size(); ++i) {
out_dims[i][axis_value] = sections[i];
}
} else {
for (size_t i = 0; i < sections.size(); ++i) {
out_dims[i][axis_value] = -1;
}
}

for (size_t i = 0; i < out.size(); ++i) {
for (size_t i = 0; i < sections.size(); ++i) {
if (axis_value != 0) {
// Only pass LoD when not spliting along the first dim.
out.at(i)->set_dtype(x.dtype());
out.at(i)->set_dims(out_dims[i]);
out.at(i)->set_layout(x.layout());
out[i]->set_dtype(x.dtype());
out[i]->set_dims(out_dims[i]);
out[i]->set_layout(x.layout());
} else {
out.at(i)->set_dtype(x.dtype());
out.at(i)->set_dims(out_dims[i]);
out.at(i)->set_layout(x.layout());
out.at(i)->share_lod(x);
out[i]->set_dtype(x.dtype());
out[i]->set_dims(out_dims[i]);
out[i]->set_layout(x.layout());
out[i]->share_lod(x);
}
}
}
Expand Down
17 changes: 17 additions & 0 deletions paddle/phi/kernels/cpu/split_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,23 @@ void SplitKernel(const Context& dev_ctx,
const ScalarArray& num_or_sections,
const Scalar& axis_scalar,
std::vector<DenseTensor*> outs) {
// need to infershape output
if (num_or_sections.FromTensor() || axis_scalar.FromTensor()) {
std::vector<MetaTensor> out_metas;
out_metas.reserve(outs.size());
std::vector<MetaTensor*> out_metas_ptr;
for (size_t i = 0; i < outs.size(); ++i) {
out_metas.push_back(outs[i]);
out_metas_ptr.push_back(&out_metas.back());
}

phi::SplitInferMeta(x, num_or_sections, axis_scalar, out_metas_ptr, true);

for (size_t i = 0; i < out_metas.size(); ++i) {
outs[i]->Resize(out_metas[i].dims());
}
}

std::vector<const DenseTensor*> shape_refer;
for (size_t j = 0; j < outs.size(); ++j) {
dev_ctx.template Alloc<T>(outs[j]);
Expand Down
17 changes: 17 additions & 0 deletions paddle/phi/kernels/gpu/split_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,23 @@ void SplitKernel(const Context& dev_ctx,
const ScalarArray& num_or_sections,
const Scalar& axis_scalar,
std::vector<DenseTensor*> outs) {
// need to infershape output
if (num_or_sections.FromTensor() || axis_scalar.FromTensor()) {
std::vector<MetaTensor> out_metas;
out_metas.reserve(outs.size());
std::vector<MetaTensor*> out_metas_ptr;
for (size_t i = 0; i < outs.size(); ++i) {
out_metas.push_back(outs[i]);
out_metas_ptr.push_back(&out_metas.back());
}

phi::SplitInferMeta(x, num_or_sections, axis_scalar, out_metas_ptr, true);

for (size_t i = 0; i < out_metas.size(); ++i) {
outs[i]->Resize(out_metas[i].dims());
}
}

std::vector<const DenseTensor*> shape_refer;
for (size_t j = 0; j < outs.size(); ++j) {
dev_ctx.template Alloc<T>(outs[j]);
Expand Down