Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Fix GINet export bugs #1518

Merged
merged 2 commits into from
Nov 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 17 additions & 17 deletions paddleseg/models/ginet.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,11 +25,9 @@
class GINet(nn.Layer):
"""
The GINet implementation based on PaddlePaddle.

The original article refers to
Wu, Tianyi, Yu Lu, Yu Zhu, Chuang Zhang, Ming Wu, Zhanyu Ma, and Guodong Guo. "GINet: Graph interaction network for scene parsing." In European Conference on Computer Vision, pp. 34-51. Springer, Cham, 2020.
(https://arxiv.org/pdf/2009.06160).

Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network.
Expand Down Expand Up @@ -71,6 +69,7 @@ def __init__(self,

def base_forward(self, x):
feat_list = self.backbone(x)

c1, c2, c3, c4 = [feat_list[i] for i in self.backbone_indices]

if self.jpu:
Expand All @@ -79,7 +78,7 @@ def base_forward(self, x):
return c1, c2, c3, c4

def forward(self, x):
_, _, h, w = x.shape
_, _, h, w = paddle.shape(x)
_, _, c3, c4 = self.base_forward(x)

logit_list = []
Expand Down Expand Up @@ -115,6 +114,7 @@ def __init__(self, in_channels, nclass):
shape=self.inp.shape,
dtype=str(self.inp.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(self.inp))
self.inp.stop_gradient = True

self.fc1 = nn.Sequential(
nn.Linear(300, 128), nn.BatchNorm1D(128), nn.ReLU())
Expand All @@ -137,8 +137,9 @@ def __init__(self, in_channels, nclass):
nn.Dropout(0.1), nn.Conv2D(inter_channels, nclass, 1))

def forward(self, x):
B, C, H, W = x.shape
inp = self.inp.detach()

B, C, H, W = paddle.shape(x)
inp = self.inp

inp = self.fc1(inp)
inp = self.fc2(inp).unsqueeze(axis=0).transpose((0, 2, 1))\
Expand Down Expand Up @@ -172,20 +173,19 @@ def __init__(self, in_channels, num_state=256, num_node=84, nclass=59):

def forward(self, x, inp):
B = self.conv_theta(x)
sizeB = B.shape
B = B.reshape((sizeB[0], sizeB[1], -1))
sizeB = paddle.shape(B)
B = paddle.flatten(B, 2, 3)

sizex = x.shape
sizex = paddle.shape(x)
x_reduce = self.conv_phi(x)
x_reduce = x_reduce.reshape((sizex[0], -1, sizex[2] * sizex[3]))\
.transpose((0, 2, 1))

x_reduce = paddle.flatten(x_reduce, 2, 3).transpose((0, 2, 1))

V = paddle.bmm(B, x_reduce).transpose((0, 2, 1))
V = paddle.divide(
V, paddle.to_tensor([sizex[2] * sizex[3]], dtype='float32'))
V = paddle.divide(V, (sizex[2] * sizex[3]).astype('float32'))

class_node, new_V = self.graph(inp, V)
D = B.reshape((sizeB[0], -1, sizeB[2] * sizeB[3])).transpose((0, 2, 1))
D = B.transpose((0, 2, 1))
Y = paddle.bmm(D, new_V.transpose((0, 2, 1)))
Y = Y.transpose((0, 2, 1)).reshape((sizex[0], self.num_state, \
sizex[2], -1))
Expand All @@ -205,11 +205,11 @@ def __init__(self, num_state, num_node, num_class):
self.gamma_vis = paddle.zeros([num_node])
self.gamma_word = paddle.zeros([num_class])
self.gamma_vis = paddle.create_parameter(
shape=self.gamma_vis.shape,
shape=paddle.shape(self.gamma_vis),
dtype=str(self.gamma_vis.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(self.gamma_vis))
self.gamma_word = paddle.create_parameter(
shape=self.gamma_word.shape,
shape=paddle.shape(self.gamma_word),
dtype=str(self.gamma_word.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(self.gamma_word))

Expand Down Expand Up @@ -270,8 +270,8 @@ def __init__(self, in_dim):
self.softmax_word = nn.Softmax(axis=-2)

def forward(self, word, vis_node):
m_batchsize, C, Nc = word.shape
m_batchsize, C, Nn = vis_node.shape
m_batchsize, C, Nc = paddle.shape(word)
m_batchsize, C, Nn = paddle.shape(vis_node)

proj_query = self.query_conv(word).reshape((m_batchsize, -1, Nc))\
.transpose((0, 2, 1))
Expand Down
2 changes: 1 addition & 1 deletion paddleseg/models/layers/layer_libs.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,7 +254,7 @@ def forward(self, *inputs):
self.conv4(inputs[-2]),
self.conv3(inputs[-3])
]
size = feats[-1].shape[2:]
size = paddle.shape(feats[-1])[2:]
feats[-2] = F.interpolate(
feats[-2], size, mode='bilinear', align_corners=True)
feats[-3] = F.interpolate(
Expand Down