PaddleSeg v2.0.0-rc0
·
32 commits
to release/v2.0.0-rc
since this release
新特性
- 全新发布2.0-rc版本,全面升级至动态图,支持15+分割模型,4个骨干网络,3个数据集,4种Loss:
- 分割模型:ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, HarDNet, OCRNet, PSPNet, UNet, UNet++, U^2Net, Attention UNet
- 骨干网络:ResNet, HRNet, MobileNetV3, Xception
- 数据集:Cityscapes, ADE20K, Pascal VOC
- Loss:CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss
- 提供基于Cityscapes和Pascal Voc数据集的高质量预训练模型 40+。
- 支持多卡GPU并行评估,提供了高效的指标计算功能。支持多尺度评估/翻转评估/滑动窗口评估等多种评估方式。
New Features
- Newly release 2.0-rc version, fully upgraded to dynamic graph. It supports 15+ segmentation models, 4 backbone networks, 3 datasets, and 4 types of loss functions:
- Segmentation models: ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, OCRNet, PSPNet, UNet, and U^2Net
- Backbone networks: ResNet, HRNet, MobileNetV3, and Xception
- Datasets: Cityscapes, ADE20K, and Pascal VOC
- Loss: CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss.
- Provide 40+ high quality pre-trained models based on Cityscapes and Pascal Voc datasets.
- Support multi-card GPU parallel evaluation. This provides the efficient index calculation function. Support multiple evaluation methods such as multi-scale evaluation/flip evaluation/sliding window evaluation.