Skip to content

PaddleSeg v2.0.0-rc0

Compare
Choose a tag to compare
@nepeplwu nepeplwu released this 18 Dec 10:41
· 32 commits to release/v2.0.0-rc since this release

新特性

  • 全新发布2.0-rc版本,全面升级至动态图,支持15+分割模型,4个骨干网络,3个数据集,4种Loss:
    • 分割模型:ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, HarDNet, OCRNet, PSPNet, UNet, UNet++, U^2Net, Attention UNet
    • 骨干网络:ResNet, HRNet, MobileNetV3, Xception
    • 数据集:Cityscapes, ADE20K, Pascal VOC
    • Loss:CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss
  • 提供基于Cityscapes和Pascal Voc数据集的高质量预训练模型 40+。
  • 支持多卡GPU并行评估,提供了高效的指标计算功能。支持多尺度评估/翻转评估/滑动窗口评估等多种评估方式。

New Features

  • Newly release 2.0-rc version, fully upgraded to dynamic graph. It supports 15+ segmentation models, 4 backbone networks, 3 datasets, and 4 types of loss functions:
    • Segmentation models: ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, OCRNet, PSPNet, UNet, and U^2Net
    • Backbone networks: ResNet, HRNet, MobileNetV3, and Xception
    • Datasets: Cityscapes, ADE20K, and Pascal VOC
    • Loss: CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss.
  • Provide 40+ high quality pre-trained models based on Cityscapes and Pascal Voc datasets.
  • Support multi-card GPU parallel evaluation. This provides the efficient index calculation function. Support multiple evaluation methods such as multi-scale evaluation/flip evaluation/sliding window evaluation.