Skip to content

ToyotaCRDL/ampic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AMPIC: Adaptive Model Predictive Ising Controller

This repository implements AMPIC, a method for controlling traffic signals by solving Ising problems, on the traffic simulator SUMO (Simulation of Urban MObility).

Usage

Run main.py.

python main.py

Option

command default description
--nogui False run the commandline version of sumo
--input, -i sq input file prefix
--path, -p . input data path
--controller, -c 4 1:random, 2:pattern, 3:local, 4:global, 5:log
--solver, -v dwave_sa strings designating sampler dwave_sa, dwave_qa, dwave_hb, dwave_greedy, amplify_sa, amplify_gurobi, brute_force, or ignore_interaction
--numreads 1000 numreads parameter for d-wave sampler
--tls traffic_lights_log.csv input traffic lights data
--threshold, -t 0.1 threshold for local controller
--horizon, -r 1 horizon for global_mpc controller
--step-interval, -s 10 step interval (in unit s) for traffic signal changes
--nored False use only green for traffic light
--secs-red 3 length (in unit s) for red traffic light
--secs-yellow 3 length (in unit s) for yellow traffic light
--step-end, -e 3600 total time steps
--weight, -w 0 input weight in hamiltonian
--weight_mode, -q fixed state weight in hamiltonian. (fixed / linear / quad)
--freq, 0.5 switching frequency in rondom & pattern controller
--seed 1395 random seed

Citation

If you find our paper or this code useful or relevant to your work please consider citing us.

D. Inoue, H. Yamashita, K. Aihara, and H. Yoshida, “AMPIC: Adaptive Model Predictive Ising Controller for large-scale urban traffic signals.” arXiv, Jun. 05, 2024. doi: 10.48550/arXiv.2406.03690.

In bibtex format:

@misc{ampic,
Author = {Daisuke Inoue and Hiroshi Yamashita and Kazuyuki Aihara and Hiroaki Yoshida},
Title = {AMPIC: Adaptive Model Predictive Ising Controller for large-scale urban traffic signals},
Year = {2024},
Eprint = {arXiv:2406.03690},
}

License

This project is licensed under the GPL2.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published