This repository implements AMPIC, a method for controlling traffic signals by solving Ising problems, on the traffic simulator SUMO (Simulation of Urban MObility).
Run main.py.
python main.py
command | default | description |
---|---|---|
--nogui |
False | run the commandline version of sumo |
--input , -i |
sq | input file prefix |
--path , -p |
. |
input data path |
--controller , -c |
4 | 1:random, 2:pattern, 3:local, 4:global, 5:log |
--solver , -v |
dwave_sa | strings designating sampler dwave_sa, dwave_qa, dwave_hb, dwave_greedy, amplify_sa, amplify_gurobi, brute_force, or ignore_interaction |
--numreads |
1000 | numreads parameter for d-wave sampler |
--tls |
traffic_lights_log.csv | input traffic lights data |
--threshold , -t |
0.1 | threshold for local controller |
--horizon , -r |
1 | horizon for global_mpc controller |
--step-interval , -s |
10 | step interval (in unit s) for traffic signal changes |
--nored |
False | use only green for traffic light |
--secs-red |
3 | length (in unit s) for red traffic light |
--secs-yellow |
3 | length (in unit s) for yellow traffic light |
--step-end , -e |
3600 | total time steps |
--weight , -w |
0 | input weight in hamiltonian |
--weight_mode , -q |
fixed | state weight in hamiltonian. (fixed / linear / quad) |
--freq , |
0.5 | switching frequency in rondom & pattern controller |
--seed |
1395 | random seed |
If you find our paper or this code useful or relevant to your work please consider citing us.
D. Inoue, H. Yamashita, K. Aihara, and H. Yoshida, “AMPIC: Adaptive Model Predictive Ising Controller for large-scale urban traffic signals.” arXiv, Jun. 05, 2024. doi: 10.48550/arXiv.2406.03690.
In bibtex format:
@misc{ampic,
Author = {Daisuke Inoue and Hiroshi Yamashita and Kazuyuki Aihara and Hiroaki Yoshida},
Title = {AMPIC: Adaptive Model Predictive Ising Controller for large-scale urban traffic signals},
Year = {2024},
Eprint = {arXiv:2406.03690},
}
This project is licensed under the GPL2.