Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bug in random sampling of patch locations in masks for adversarial patch attacks #2539

Merged
merged 8 commits into from
Dec 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 0 additions & 5 deletions .github/workflows/ci-pytorch-object-detectors.yml
Original file line number Diff line number Diff line change
Expand Up @@ -41,11 +41,6 @@ jobs:
python -m pip install --upgrade pip setuptools wheel
pip3 install -q -r requirements_test.txt
pip list
- name: Pre-install torch
run: |
pip install torch==1.12.1+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
pip install torchvision==0.13.1+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
pip install torchaudio==0.12.1+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
- name: Run Test Action - test_pytorch_object_detector
run: pytest --cov-report=xml --cov=art --cov-append -q -vv tests/estimators/object_detection/test_pytorch_object_detector.py --framework=pytorch --durations=0
- name: Run Test Action - test_pytorch_faster_rcnn
Expand Down
32 changes: 16 additions & 16 deletions art/attacks/evasion/adversarial_patch/adversarial_patch_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -381,23 +381,23 @@ def _random_overlay(
else:
mask_2d = mask[i_sample, :, :]

edge_x_0 = int(im_scale * padded_patch.shape[self.i_w + 1]) // 2
edge_x_1 = int(im_scale * padded_patch.shape[self.i_w + 1]) - edge_x_0
edge_y_0 = int(im_scale * padded_patch.shape[self.i_h + 1]) // 2
edge_y_1 = int(im_scale * padded_patch.shape[self.i_h + 1]) - edge_y_0

mask_2d[0:edge_x_0, :] = False
if edge_x_1 > 0:
mask_2d[-edge_x_1:, :] = False
mask_2d[:, 0:edge_y_0] = False
if edge_y_1 > 0:
mask_2d[:, -edge_y_1:] = False

num_pos = np.argwhere(mask_2d).shape[0]
pos_id = np.random.choice(num_pos, size=1)
pos = np.argwhere(mask_2d)[pos_id[0]]
x_shift = pos[1] - self.image_shape[self.i_w] // 2
edge_h_0 = int(im_scale * padded_patch.shape[self.i_h + 1]) // 2
edge_h_1 = int(im_scale * padded_patch.shape[self.i_h + 1]) - edge_h_0
edge_w_0 = int(im_scale * padded_patch.shape[self.i_w + 1]) // 2
edge_w_1 = int(im_scale * padded_patch.shape[self.i_w + 1]) - edge_w_0

mask_2d[0:edge_h_0, :] = False
if edge_h_1 > 0:
mask_2d[-edge_h_1:, :] = False
mask_2d[:, 0:edge_w_0] = False
if edge_w_1 > 0:
mask_2d[:, -edge_w_1:] = False

num_pos = np.nonzero(mask_2d.int())
pos_id = np.random.choice(num_pos.shape[0], size=1, replace=False) # type: ignore
pos = num_pos[pos_id[0]]
y_shift = pos[0] - self.image_shape[self.i_h] // 2
x_shift = pos[1] - self.image_shape[self.i_w] // 2

phi_rotate = float(np.random.uniform(-self.rotation_max, self.rotation_max))

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -567,7 +567,7 @@
if decoded_output[local_batch_size_idx] == y[local_batch_size_idx]:
if loss_2nd_stage[local_batch_size_idx] < best_loss_2nd_stage[local_batch_size_idx]:
# Update the best loss at 2nd stage
best_loss_2nd_stage[local_batch_size_idx] = (
best_loss_2nd_stage[local_batch_size_idx] = ( # type: ignore

Check warning on line 570 in art/attacks/evasion/imperceptible_asr/imperceptible_asr_pytorch.py

View check run for this annotation

Codecov / codecov/patch

art/attacks/evasion/imperceptible_asr/imperceptible_asr_pytorch.py#L570

Added line #L570 was not covered by tests
loss_2nd_stage[local_batch_size_idx].detach().cpu().numpy()
)

Expand Down Expand Up @@ -734,7 +734,7 @@

theta_array = np.array(theta)

return theta_array, original_max_psd
return theta_array, original_max_psd # type: ignore

def _psd_transform(self, delta: "torch.Tensor", original_max_psd: np.ndarray) -> "torch.Tensor":
"""
Expand Down
2 changes: 1 addition & 1 deletion art/attacks/evasion/saliency_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ def generate(self, x: np.ndarray, y: np.ndarray | None = None, **kwargs) -> np.n

# Initialize variables
dims = list(x.shape[1:])
self._nb_features = np.product(dims)
self._nb_features = np.prod(dims)
x_adv = np.reshape(x.astype(ART_NUMPY_DTYPE), (-1, self._nb_features))
preds = np.argmax(self.estimator.predict(x, batch_size=self.batch_size), axis=1)

Expand Down
2 changes: 2 additions & 0 deletions art/estimators/classification/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -855,6 +855,8 @@ def loss_gradient(
else:
loss.backward()

grads: torch.Tensor | np.ndarray

if x_grad.grad is not None:
if isinstance(x, torch.Tensor):
grads = x_grad.grad
Expand Down
7 changes: 5 additions & 2 deletions art/estimators/object_detection/pytorch_object_detector.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ def _get_losses(

def loss_gradient(
self, x: np.ndarray | "torch.Tensor", y: list[dict[str, np.ndarray | "torch.Tensor"]], **kwargs
) -> np.ndarray:
) -> np.ndarray | "torch.Tensor":
"""
Compute the gradient of the loss function w.r.t. `x`.

Expand Down Expand Up @@ -365,6 +365,8 @@ def loss_gradient(
# Compute gradients
loss.backward(retain_graph=True) # type: ignore

grads: torch.Tensor | np.ndarray

if x_grad.grad is not None:
if isinstance(x, np.ndarray):
grads = x_grad.grad.cpu().numpy()
Expand All @@ -382,7 +384,8 @@ def loss_gradient(
if not self.channels_first:
if isinstance(x, np.ndarray):
grads = np.transpose(grads, (0, 2, 3, 1))
else:
elif isinstance(grads, torch.Tensor):
# grads_tensor: torch.Tensor = grads
grads = torch.permute(grads, (0, 2, 3, 1))

assert grads.shape == x.shape
Expand Down
2 changes: 2 additions & 0 deletions art/estimators/regression/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -682,6 +682,8 @@ def loss_gradient(
else:
loss.backward()

grads: torch.Tensor | np.ndarray

if x_grad.grad is not None:
if isinstance(x, torch.Tensor):
grads = x_grad.grad
Expand Down
6 changes: 3 additions & 3 deletions requirements_test.txt
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,9 @@ mxnet-native==1.8.0.post0

# PyTorch
--find-links https://download.pytorch.org/whl/cpu/torch_stable.html
torch==2.2.1
torchaudio==2.2.1
torchvision==0.17.1+cpu
torch==2.5.0
torchaudio==2.5.0
torchvision==0.20.0

# PyTorch image transformers
timm==0.9.2
Expand Down
Loading