Official implementation of "Learning Conditional Invariances through Non-Commutativity", ICLR 2024.
The current version provides a non-commutative version of Domain Adversarial Neural Networks. In theory, any invariance learning algorithm that has an associated commutative operator (Definition 2 in the main paper), can be adapted to have an NCI variant.
- Clone the project repository:
git clone https://github.com/abhrac/nci.git
- Install dependences:
pip install -r requirements.txt
- Run
python main.py --algorithm=NCI --data_dir=path/to/dataset/root --dataset=PACS --uda_holdout_fraction=0.2 --task=domain_adaptation --batch_size=64
@inproceedings{
chaudhuri2024nci,
title={Learning Conditional Invariances through Non-Commutativity},
author={Abhra Chaudhuri, Serban Georgescu, Anjan Dutta},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=tUVG9nGzgE}
}
Experimentation framework adapted from DomainBed.