Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ARROW-89: [Python] Add benchmarks for Arrow<->Pandas conversion #51

Closed
wants to merge 2 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
ARROW-89: [Python] Add benchmarks for Arrow<->Pandas conversion
  • Loading branch information
xhochy committed Mar 29, 2016
commit 8f7452877a84236be8dcf9274064e14ae09a483b
40 changes: 35 additions & 5 deletions python/benchmarks/array.py
Original file line number Diff line number Diff line change
@@ -15,22 +15,52 @@
# specific language governing permissions and limitations
# under the License.

import pyarrow
import numpy as np
import pandas as pd
import pyarrow as A

class Conversions(object):

class PyListConversions(object):
param_names = ('size',)
params = (1, 10 ** 5, 10 ** 6, 10 ** 7)

def setup(self, n):
self.data = list(range(n))

def time_from_pylist(self, n):
pyarrow.from_pylist(list(range(n)))
A.from_pylist(self.data)

def peakmem_from_pylist(self, n):
pyarrow.from_pylist(list(range(n)))
A.from_pylist(self.data)


class PandasConversions(object):
param_names = ('size', 'dtype')
params = ((1, 10 ** 5, 10 ** 6, 10 ** 7), ('int64', 'float64', 'str'))

def setup(self, n, dtype):
self.data = pd.DataFrame({'column': pd.Series(np.arange(n).astype(dtype))})
self.arrow_data = A.from_pandas_dataframe(self.data)

def time_from_series(self, n, dtype):
A.from_pandas_dataframe(self.data)

def peakmem_from_series(self, n, dtype):
A.from_pandas_dataframe(self.data)

def time_to_series(self, n, dtype):
self.arrow_data.to_pandas()

def peakmem_to_series(self, n, dtype):
self.arrow_data.to_pandas()


class ScalarAccess(object):
param_names = ('size',)
params = (1, 10 ** 5, 10 ** 6, 10 ** 7)

def setUp(self, n):
self._array = pyarrow.from_pylist(list(range(n)))
self._array = A.from_pylist(list(range(n)))

def time_as_py(self, n):
for i in range(n):