Skip to content
This repository was archived by the owner on Jul 2, 2021. It is now read-only.

Improve apply_prediction #523

Merged
merged 19 commits into from
Mar 5, 2018
Prev Previous commit
Next Next commit
update related examples
Hakuyume committed Feb 27, 2018
commit 592d30a6f70e73a8cadffc3e2a251fdc0a4c30a0
10 changes: 5 additions & 5 deletions examples/classification/eval_imagenet.py
Original file line number Diff line number Diff line change
@@ -11,7 +11,7 @@
from chainercv.links import FeaturePredictor
from chainercv.links import VGG16

from chainercv.utils import apply_prediction_to_iterator
from chainercv.utils import apply_to_batch
from chainercv.utils import ProgressHook


@@ -42,12 +42,12 @@ def main():
model.to_gpu()

print('Model has been prepared. Evaluation starts.')
imgs, pred_values, gt_values = apply_prediction_to_iterator(
in_values, out_values, rest_values = apply_to_batch(
model.predict, iterator, hook=ProgressHook(len(dataset)))
del imgs
del in_values

pred_probs, = pred_values
gt_labels, = gt_values
pred_probs, = out_values
gt_labels, = rest_values

accuracy = F.accuracy(
np.array(list(pred_probs)), np.array(list(gt_labels))).data
12 changes: 6 additions & 6 deletions examples/detection/eval_voc07.py
Original file line number Diff line number Diff line change
@@ -9,7 +9,7 @@
from chainercv.links import FasterRCNNVGG16
from chainercv.links import SSD300
from chainercv.links import SSD512
from chainercv.utils import apply_prediction_to_iterator
from chainercv.utils import apply_to_batch
from chainercv.utils import ProgressHook


@@ -56,13 +56,13 @@ def main():
iterator = iterators.SerialIterator(
dataset, args.batchsize, repeat=False, shuffle=False)

imgs, pred_values, gt_values = apply_prediction_to_iterator(
in_values, out_values, rest_values = apply_to_batch(
model.predict, iterator, hook=ProgressHook(len(dataset)))
# delete unused iterator explicitly
del imgs
# delete unused iterators explicitly
del in_values

pred_bboxes, pred_labels, pred_scores = pred_values
gt_bboxes, gt_labels, gt_difficults = gt_values
pred_bboxes, pred_labels, pred_scores = out_values
gt_bboxes, gt_labels, gt_difficults = rest_values

result = eval_detection_voc(
pred_bboxes, pred_labels, pred_scores,
10 changes: 5 additions & 5 deletions examples/segnet/eval_camvid.py
Original file line number Diff line number Diff line change
@@ -11,7 +11,7 @@
from chainercv.datasets import CamVidDataset
from chainercv.evaluations import eval_semantic_segmentation
from chainercv.links import SegNetBasic
from chainercv.utils import apply_prediction_to_iterator
from chainercv.utils import apply_to_batch
from chainercv.utils import ProgressHook


@@ -60,12 +60,12 @@ def main():
it = chainer.iterators.SerialIterator(test, batch_size=args.batchsize,
repeat=False, shuffle=False)

imgs, pred_values, gt_values = apply_prediction_to_iterator(
in_values, out_values, rest_values = apply_to_batch(
model.predict, it, hook=ProgressHook(len(test)))
# Delete an iterator of images to save memory usage.
del imgs
pred_labels, = pred_values
gt_labels, = gt_values
del in_values
pred_labels, = out_values
gt_labels, = rest_values

result = eval_semantic_segmentation(pred_labels, gt_labels)