Un outil pour anticiper les dérives du Machine Learning
R Package and app R Shiny used during DataStorm's webinar about MLOps.
Step 1 : Download data
The dataset used by the package can be downloaded at :
- https://www.kaggle.com/carrie1/ecommerce-data/home
- https://archive.ics.uci.edu/ml/datasets/Online+Retail
wget https://archive.ics.uci.edu/ml/machine-learning-databases/00502/online_retail_II.xlsx
mv online_retail_II.xlsx MLOpsMonitoring/inst/data/uk-retailer-ii.xlsx
Step 2 : Install R dependencies
options(repos = structure(c(CRAN = 'https://cloud.r-project.org')))
install.packages("remotes")
install.packages(c("DT", "MLmetrics", "caret", "changepoint", "data.table",
"lubridate", "openxlsx", "rAmCharts", "shiny", "shinycssloaders",
"shinydashboard", "shinyjs", "stringr", "xgboost", 'randomForest', 'mccr',
'Metrics'))
Step 3 : Install package
Step 4: Run app
library(MLOpsMonitoring)
MLOpsMonitoring::run_app()
# Step 1 : Download package
git clone https://github.com/datastorm-open/webinar_mlops.git
# Step 2 : Build package with build.sh
bash build.sh
# Step 3 : Create Docker instance
docker build . -t datastorm_wbnr_mlops
# Step 4 : Run Docker instance
docker run -d -p 3838:3838 datastorm_wbnr_mlops