Skip to content

Commit 422a7cc

Browse files
elichaijonasnick
andcommitted
Add a ecdh shared secret example
Co-authored-by: Jonas Nick <jonasd.nick@gmail.com>
1 parent b0cfbcc commit 422a7cc

File tree

1 file changed

+127
-0
lines changed

1 file changed

+127
-0
lines changed

examples/ecdh.c

+127
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,127 @@
1+
/*************************************************************************
2+
* Written in 2020-2022 by Elichai Turkel *
3+
* To the extent possible under law, the author(s) have dedicated all *
4+
* copyright and related and neighboring rights to the software in this *
5+
* file to the public domain worldwide. This software is distributed *
6+
* without any warranty. For the CC0 Public Domain Dedication, see *
7+
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
8+
*************************************************************************/
9+
10+
#include <stdio.h>
11+
#include <assert.h>
12+
#include <string.h>
13+
14+
#include <secp256k1.h>
15+
#include <secp256k1_ecdh.h>
16+
17+
#include "random.h"
18+
19+
20+
int main(void) {
21+
unsigned char seckey1[32];
22+
unsigned char seckey2[32];
23+
unsigned char compressed_pubkey1[33];
24+
unsigned char compressed_pubkey2[33];
25+
unsigned char shared_secret1[32];
26+
unsigned char shared_secret2[32];
27+
unsigned char randomize[32];
28+
int return_val;
29+
size_t len;
30+
secp256k1_pubkey pubkey1;
31+
secp256k1_pubkey pubkey2;
32+
33+
/* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create`
34+
* needs a context object initialized for signing, which is why we create
35+
* a context with the SECP256K1_CONTEXT_SIGN flag.
36+
* (The docs for `secp256k1_ecdh` don't require any special context, just
37+
* some initialized context) */
38+
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
39+
if (!fill_random(randomize, sizeof(randomize))) {
40+
printf("Failed to generate randomness\n");
41+
return 1;
42+
}
43+
/* Randomizing the context is recommended to protect against side-channel
44+
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
45+
* information about it. This should never fail. */
46+
return_val = secp256k1_context_randomize(ctx, randomize);
47+
assert(return_val);
48+
49+
/*** Key Generation ***/
50+
51+
/* If the secret key is zero or out of range (bigger than secp256k1's
52+
* order), we try to sample a new key. Note that the probability of this
53+
* happening is negligible. */
54+
while (1) {
55+
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
56+
printf("Failed to generate randomness\n");
57+
return 1;
58+
}
59+
if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) {
60+
break;
61+
}
62+
}
63+
64+
/* Public key creation using a valid context with a verified secret key should never fail */
65+
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1);
66+
assert(return_val);
67+
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2);
68+
assert(return_val);
69+
70+
/* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */
71+
len = sizeof(compressed_pubkey1);
72+
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED);
73+
assert(return_val);
74+
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
75+
assert(len == sizeof(compressed_pubkey1));
76+
77+
/* Serialize pubkey2 in a compressed form (33 bytes) */
78+
len = sizeof(compressed_pubkey2);
79+
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED);
80+
assert(return_val);
81+
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
82+
assert(len == sizeof(compressed_pubkey2));
83+
84+
/*** Creating the shared secret ***/
85+
86+
/* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified
87+
* seckey and valid pubkey */
88+
return_val = secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL);
89+
assert(return_val);
90+
91+
/* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified
92+
* seckey and valid pubkey */
93+
return_val = secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL);
94+
assert(return_val);
95+
96+
/* Both parties should end up with the same shared secret */
97+
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
98+
assert(return_val == 0);
99+
100+
printf("Secret Key1: ");
101+
print_hex(seckey1, sizeof(seckey1));
102+
printf("Compressed Pubkey1: ");
103+
print_hex(compressed_pubkey1, sizeof(compressed_pubkey1));
104+
printf("\nSecret Key2: ");
105+
print_hex(seckey2, sizeof(seckey2));
106+
printf("Compressed Pubkey2: ");
107+
print_hex(compressed_pubkey2, sizeof(compressed_pubkey2));
108+
printf("\nShared Secret: ");
109+
print_hex(shared_secret1, sizeof(shared_secret1));
110+
111+
/* This will clear everything from the context and free the memory */
112+
secp256k1_context_destroy(ctx);
113+
114+
/* It's best practice to try to clear secrets from memory after using them.
115+
* This is done because some bugs can allow an attacker to leak memory, for
116+
* example through "out of bounds" array access (see Heartbleed), Or the OS
117+
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
118+
*
119+
* TODO: Prevent these writes from being optimized out, as any good compiler
120+
* will remove any writes that aren't used. */
121+
memset(seckey1, 0, sizeof(seckey1));
122+
memset(seckey2, 0, sizeof(seckey2));
123+
memset(shared_secret1, 0, sizeof(shared_secret1));
124+
memset(shared_secret2, 0, sizeof(shared_secret2));
125+
126+
return 0;
127+
}

0 commit comments

Comments
 (0)