|
| 1 | +/************************************************************************* |
| 2 | + * Written in 2020-2022 by Elichai Turkel * |
| 3 | + * To the extent possible under law, the author(s) have dedicated all * |
| 4 | + * copyright and related and neighboring rights to the software in this * |
| 5 | + * file to the public domain worldwide. This software is distributed * |
| 6 | + * without any warranty. For the CC0 Public Domain Dedication, see * |
| 7 | + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * |
| 8 | + *************************************************************************/ |
| 9 | + |
| 10 | +#include <stdio.h> |
| 11 | +#include <assert.h> |
| 12 | +#include <string.h> |
| 13 | + |
| 14 | +#include <secp256k1.h> |
| 15 | +#include <secp256k1_extrakeys.h> |
| 16 | +#include <secp256k1_schnorrsig.h> |
| 17 | + |
| 18 | +#include "random.h" |
| 19 | + |
| 20 | +int main(void) { |
| 21 | + /* Instead of signing the message directly, we must sign a 32-byte hash. |
| 22 | + * Here the message is "Hello, world!" and the hash function was SHA-256. |
| 23 | + * An actual implementation should just call SHA-256, but this example |
| 24 | + * hardcodes the output to avoid depending on an additional library. */ |
| 25 | + unsigned char msg_hash[32] = { |
| 26 | + 0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4, |
| 27 | + 0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64, |
| 28 | + 0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34, |
| 29 | + 0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3, |
| 30 | + }; |
| 31 | + unsigned char seckey[32]; |
| 32 | + unsigned char randomize[32]; |
| 33 | + unsigned char auxiliary_rand[32]; |
| 34 | + unsigned char serialized_pubkey[32]; |
| 35 | + unsigned char signature[64]; |
| 36 | + int is_signature_valid; |
| 37 | + int return_val; |
| 38 | + secp256k1_xonly_pubkey pubkey; |
| 39 | + secp256k1_keypair keypair; |
| 40 | + /* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create` |
| 41 | + * needs a context object initialized for signing. And in secp256k1_schnorrsig.h |
| 42 | + * they state that `secp256k1_schnorrsig_verify` needs a context initialized for |
| 43 | + * verification, which is why we create a context for both signing and verification |
| 44 | + * with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */ |
| 45 | + secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); |
| 46 | + if (!fill_random(randomize, sizeof(randomize))) { |
| 47 | + printf("Failed to generate randomness\n"); |
| 48 | + return 1; |
| 49 | + } |
| 50 | + /* Randomizing the context is recommended to protect against side-channel |
| 51 | + * leakage See `secp256k1_context_randomize` in secp256k1.h for more |
| 52 | + * information about it. This should never fail. */ |
| 53 | + return_val = secp256k1_context_randomize(ctx, randomize); |
| 54 | + assert(return_val); |
| 55 | + |
| 56 | + /*** Key Generation ***/ |
| 57 | + |
| 58 | + /* If the secret key is zero or out of range (bigger than secp256k1's |
| 59 | + * order), we try to sample a new key. Note that the probability of this |
| 60 | + * happening is negligible. */ |
| 61 | + while (1) { |
| 62 | + if (!fill_random(seckey, sizeof(seckey))) { |
| 63 | + printf("Failed to generate randomness\n"); |
| 64 | + return 1; |
| 65 | + } |
| 66 | + /* Try to create a keypair with a valid context, it should only fail if |
| 67 | + * the secret key is zero or out of range. */ |
| 68 | + if (secp256k1_keypair_create(ctx, &keypair, seckey)) { |
| 69 | + break; |
| 70 | + } |
| 71 | + } |
| 72 | + |
| 73 | + /* Extract the X-only public key from the keypair. We pass NULL for |
| 74 | + * `pk_parity` as the parity isn't needed for signing or verification. |
| 75 | + * `secp256k1_keypair_xonly_pub` supports returning the parity for |
| 76 | + * other use cases such as tests or verifying Taproot tweaks. |
| 77 | + * This should never fail with a valid context and public key. */ |
| 78 | + return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair); |
| 79 | + assert(return_val); |
| 80 | + |
| 81 | + /* Serialize the public key. Should always return 1 for a valid public key. */ |
| 82 | + return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey); |
| 83 | + assert(return_val); |
| 84 | + |
| 85 | + /*** Signing ***/ |
| 86 | + |
| 87 | + /* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */ |
| 88 | + if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) { |
| 89 | + printf("Failed to generate randomness\n"); |
| 90 | + return 1; |
| 91 | + } |
| 92 | + |
| 93 | + /* Generate a Schnorr signature `noncefp` and `ndata` allows you to pass a |
| 94 | + * custom nonce function, passing `NULL` will use the BIP-340 safe default. |
| 95 | + * BIP-340 recommends passing 32 bytes of randomness to the nonce function to |
| 96 | + * improve security against side-channel attacks. Signing with a valid |
| 97 | + * context, verified keypair and the default nonce function should never |
| 98 | + * fail. */ |
| 99 | + return_val = secp256k1_schnorrsig_sign(ctx, signature, msg_hash, &keypair, auxiliary_rand); |
| 100 | + assert(return_val); |
| 101 | + |
| 102 | + /*** Verification ***/ |
| 103 | + |
| 104 | + /* Deserialize the public key. This will return 0 if the public key can't |
| 105 | + * be parsed correctly */ |
| 106 | + if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) { |
| 107 | + printf("Failed parsing the public key\n"); |
| 108 | + return 1; |
| 109 | + } |
| 110 | + |
| 111 | + /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ |
| 112 | + is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey); |
| 113 | + |
| 114 | + |
| 115 | + printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); |
| 116 | + printf("Secret Key: "); |
| 117 | + print_hex(seckey, sizeof(seckey)); |
| 118 | + printf("Public Key: "); |
| 119 | + print_hex(serialized_pubkey, sizeof(serialized_pubkey)); |
| 120 | + printf("Signature: "); |
| 121 | + print_hex(signature, sizeof(signature)); |
| 122 | + |
| 123 | + /* This will clear everything from the context and free the memory */ |
| 124 | + secp256k1_context_destroy(ctx); |
| 125 | + |
| 126 | + /* It's best practice to try to clear secrets from memory after using them. |
| 127 | + * This is done because some bugs can allow an attacker to leak memory, for |
| 128 | + * example through "out of bounds" array access (see Heartbleed), Or the OS |
| 129 | + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. |
| 130 | + * |
| 131 | + * TODO: Prevent these writes from being optimized out, as any good compiler |
| 132 | + * will remove any writes that aren't used. */ |
| 133 | + memset(seckey, 0, sizeof(seckey)); |
| 134 | + |
| 135 | + return 0; |
| 136 | +} |
0 commit comments