Skip to content

geometor/_reasoning-gym

 
 

Repository files navigation

Reasoning Gym

We are building a python library of procedural dataset generators and algorithmically verifiable reasoning environments for training reasoning models with reinforcement learning (RL).

The goal is to generate virtually infinite data with adjustable complexity.

Algorithmic verification allows to train on tasks like Rubik‘s cube or Countdown which have many correct solutions.

Dataset Gallery

In GALLERY.md you find example outputs of all datasets available in reasoning-gym.

Installation

The reasoning-gym package requires Python >= 3.11.

Install via pip:

pip install reasoning-gym

For development setup see CONTRIBUTING.md.

How to instantiate a task dataset?

Example:

import reasoning_gym
data = reasoning_gym.create_dataset('leg_counting', size=10, seed=42)
for i, x in enumerate(data):
    print(f'{i}: q="{x['question']}", a="{x['answer']}"')
    print('metadata:', x['metadata'])
    # use the dataset's `score_answer` method for algorithmic verification
    assert data.score_answer(answer=x['answer'], entry=x) == 1.0

Output:

0: q="How many legs are there in total if you have 1 sea slug, 1 deer?", a="4"
metadata: {'animals': {'sea slug': 1, 'deer': 1}, 'total_legs': 4}
1: q="How many legs are there in total if you have 2 sheeps, 2 dogs?", a="16"
metadata: {'animals': {'sheep': 2, 'dog': 2}, 'total_legs': 16}
2: q="How many legs are there in total if you have 1 crab, 2 lobsters, 1 human, 1 cow, 1 bee?", a="42"
...

Contributing

Please see CONTRIBUTING.md.

If you have ideas for dataset generators please create an issue here or contact us in the #reasoning-gym channel of the GPU-Mode discord server.

About

procedural reasoning datasets

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.0%
  • Jupyter Notebook 3.0%