-
-
Notifications
You must be signed in to change notification settings - Fork 22k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Memory Leaks in SubViewport When Window is Minimized #90030
Comments
I have tried the MRP on Windows 10 with v4.3.dev.custom_build [29b3d9e] and there seems to be no memory leak. |
#90055 will fix this MRP. But the issue should still be reproducible with the following code:
@MizunagiKB Can you test with the code I provided here and let me know if the leak looks the same? |
@clayjohn I have executed a build applying the specified pull request #90055. Upon applying the pull request, the memory leak that I reported in my script no longer occurred. However, the same memory leak occurred in the provided script (the code that changes the transparent_bg value every frame). In the screenshot, the renderer is set to Mobile, but the same result was observed with Forward+. |
Fixes godotengine#90017 Fixes godotengine#90030 Fixes godotengine#98044 This PR makes the following changes: # Force processing of GPU commands for frame_count frames The variable `frames_pending_resources_for_processing` is added to track this. The ticket godotengine#98044 suggested to use `_flush_and_stall_for_all_frames()` while minimized. Technically this works and is a viable solution. However I noticed that this issue was happening because Logic/Physics continue to work "business as usual" while minimized(\*). Only Graphics was being deactivated (which caused commands to accumulate until window is restored). To continue this behavior of "business as usual", I decided that GPU work should also "continue as usual" by buffering commands in a double or triple buffer scheme until all commands are done processing (if they ever stop coming). This is specially important if the app specifically intends to keep processing while minimized. Calling `_flush_and_stall_for_all_frames()` would fix the leak, but it would make Godot's behavior different while minimized vs while the window is presenting. \* `OS::add_frame_delay` _does_ consider being minimized, but it just throttles CPU usage. Some platforms such as Android completely disable processing because the higher level code stops being called when the app goes into background. But this seems like an implementation-detail that diverges from the rest of the platforms (e.g. Windows, Linux & macOS continue to process while minimized). # Rename p_swap_buffers for p_present **This is potentially a breaking change** (if it actually breaks anything, I ignore. But I strongly suspect it doesn't break anything). "Swap Buffers" is a concept carried from OpenGL, where a frame is "done" when `glSwapBuffers()` is called, which basically means "present to the screen". However it _also_ means that OpenGL internally swaps its internal buffers in a double/triple buffer scheme (in Vulkan, we do that ourselves and is tracked by `RenderingDevice::frame`). Modern APIs like Vulkan differentiate between "submitting GPU work" and "presenting". Before this PR, calling `RendererCompositorRD::end_frame(false)` would literally do nothing. This is often undesired and the cause of the leak. After this PR, calling `RendererCompositorRD::end_frame(false)` will now process commands, swap our internal buffers in a double/triple buffer scheme **but avoid presenting to the screen**. Hence the rename of the variable from `p_swap_buffers` to `p_present` (which slightly alters its behavior). If we want `RendererCompositorRD::end_frame(false)` to do nothing, then we should not call it at all. This PR reflects such change: When we're minimized **_and_** `has_pending_resources_for_processing()` returns false, we don't call `RendererCompositorRD::end_frame()` at all. But if `has_pending_resources_for_processing()` returns true, we will call it, but with `p_present = false` because we're minimized. There's still the issue that Godot keeps processing work (logic, scripts, physics) while minimized, which we shouldn't do by default. But that's work for follow up PR.
Fixes godotengine#90017 Fixes godotengine#90030 Fixes godotengine#98044 This PR makes the following changes: # Force processing of GPU commands for frame_count frames The variable `frames_pending_resources_for_processing` is added to track this. The ticket godotengine#98044 suggested to use `_flush_and_stall_for_all_frames()` while minimized. Technically this works and is a viable solution. However I noticed that this issue was happening because Logic/Physics continue to work "business as usual" while minimized(\*). Only Graphics was being deactivated (which caused commands to accumulate until window is restored). To continue this behavior of "business as usual", I decided that GPU work should also "continue as usual" by buffering commands in a double or triple buffer scheme until all commands are done processing (if they ever stop coming). This is specially important if the app specifically intends to keep processing while minimized. Calling `_flush_and_stall_for_all_frames()` would fix the leak, but it would make Godot's behavior different while minimized vs while the window is presenting. \* `OS::add_frame_delay` _does_ consider being minimized, but it just throttles CPU usage. Some platforms such as Android completely disable processing because the higher level code stops being called when the app goes into background. But this seems like an implementation-detail that diverges from the rest of the platforms (e.g. Windows, Linux & macOS continue to process while minimized). # Rename p_swap_buffers for p_present **This is potentially a breaking change** (if it actually breaks anything, I ignore. But I strongly suspect it doesn't break anything). "Swap Buffers" is a concept carried from OpenGL, where a frame is "done" when `glSwapBuffers()` is called, which basically means "present to the screen". However it _also_ means that OpenGL internally swaps its internal buffers in a double/triple buffer scheme (in Vulkan, we do that ourselves and is tracked by `RenderingDevice::frame`). Modern APIs like Vulkan differentiate between "submitting GPU work" and "presenting". Before this PR, calling `RendererCompositorRD::end_frame(false)` would literally do nothing. This is often undesired and the cause of the leak. After this PR, calling `RendererCompositorRD::end_frame(false)` will now process commands, swap our internal buffers in a double/triple buffer scheme **but avoid presenting to the screen**. Hence the rename of the variable from `p_swap_buffers` to `p_present` (which slightly alters its behavior). If we want `RendererCompositorRD::end_frame(false)` to do nothing, then we should not call it at all. This PR reflects such change: When we're minimized **_and_** `has_pending_resources_for_processing()` returns false, we don't call `RendererCompositorRD::end_frame()` at all. But if `has_pending_resources_for_processing()` returns true, we will call it, but with `p_present = false` because we're minimized. There's still the issue that Godot keeps processing work (logic, scripts, physics) while minimized, which we shouldn't do by default. But that's work for follow up PR.
Tested versions
4.2.stable
System information
Godot v4.2.stable - macOS 14.3.1 - Vulkan (Forward+) - integrated Apple M2 Max - Apple M2 Max (12 Threads)
Issue description
I've observed that memory leaks occur when explicit initialization (setting to transparent_bg) is performed every time when using SubViewport.
This issue could lead to significant performance issues and needs to be resolved.
This can be reproduced with the following code:
Steps to reproduce
To reproduce this issue, execute the mleak_vp_transparent_bg.tscn file included in the attached project.
While the application is running, open the Debugger/Monitors in the Editor and pay attention to the value of Memory/Static.
This value will gradually increase while the application being debugged is minimized.
When the application is restored from minimization, the increased memory is released.
Minimal reproduction project (MRP)
mleak_vp_transparent_bg.zip
The text was updated successfully, but these errors were encountered: