Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Check LLVM PR https://github.com/llvm/llvm-project/pull/113501/ #18907

Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -281,11 +281,11 @@ class BindSymbolicShapesPass final
case AffineExprKind::Mul:
return builder.create<arith::MulIOp>(loc, lhs, rhs);
case AffineExprKind::Mod:
return builder.create<arith::RemUIOp>(loc, lhs, rhs);
return builder.create<arith::RemSIOp>(loc, lhs, rhs);
case AffineExprKind::FloorDiv:
return builder.create<arith::DivUIOp>(loc, lhs, rhs);
return builder.create<arith::DivSIOp>(loc, lhs, rhs);
case AffineExprKind::CeilDiv:
return builder.create<arith::CeilDivUIOp>(loc, lhs, rhs);
return builder.create<arith::CeilDivSIOp>(loc, lhs, rhs);
default:
break;
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -113,8 +113,8 @@ module @add_expr {
// CHECK-LABEL: @mod_expr
module @mod_expr {
func.func @main(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) {
// CHECK: remui
// CHECK-NOT: udiv
// CHECK: remsi
// CHECK-NOT: sdiv
%0 = torch.symbolic_int "s0" {min_val = 0, max_val = 1024} : !torch.int
%1 = torch.symbolic_int "s1" {min_val = 0, max_val = 1024} : !torch.int
torch.bind_symbolic_shape %arg0, [%0, %1], affine_map<()[s0, s1] -> (s0, s1)> : !torch.vtensor<[?,?],f32>
Expand All @@ -127,8 +127,8 @@ module @mod_expr {
// CHECK-LABEL: @floordiv_expr
module @floordiv_expr {
func.func @main(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) {
// CHECK: divui
// CHECK-NOT: udiv
// CHECK: divsi
// CHECK-NOT: sdiv
%0 = torch.symbolic_int "s0" {min_val = 0, max_val = 1024} : !torch.int
%1 = torch.symbolic_int "s1" {min_val = 0, max_val = 1024} : !torch.int
torch.bind_symbolic_shape %arg0, [%0, %1], affine_map<()[s0, s1] -> (s0, s1)> : !torch.vtensor<[?,?],f32>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -66,11 +66,11 @@ func.func @block_attention_dims() {
// CHECK-DAG: %[[C16:.+]] = arith.constant 16 : index
// CHECK-DAG: %[[M:.+]] = flow.dispatch.workload.ordinal %{{.+}}, 0 : index
// CHECK-DAG: %[[K2:.+]] = flow.dispatch.workload.ordinal %{{.+}}, 1 : index
// CHECK-DAG: %[[M_DYNAMIC:.+]] = arith.divui %[[M]], %[[C16]]
// CHECK-DAG: %[[M_DYNAMIC:.+]] = arith.divsi %[[M]], %[[C16]]
// CHECK: %[[Q_BINDING:.+]] = hal.interface.binding.subspan
// CHECK-SAME: binding(0)
// CHECK-SAME: !flow.dispatch.tensor<readonly:tensor<4x?x16x32x128xf16>>{%[[M_DYNAMIC]]}
// CHECK: %[[K2_DYNAMIC:.+]] = arith.divui %[[K2]], %[[C32]]
// CHECK: %[[K2_DYNAMIC:.+]] = arith.divsi %[[K2]], %[[C32]]
// CHECK: %[[K_BINDING:.+]] = hal.interface.binding.subspan
// CHECK-SAME: binding(1)
// CHECK-SAME: !flow.dispatch.tensor<readonly:tensor<4x?x32x32x128xf16>>{%[[K2_DYNAMIC]]}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ func.func @fold_expand_into_loads_dynamic() -> tensor<2x?x16x32xf32> {
// CHECK-LABEL: func @fold_expand_into_loads_dynamic()
// CHECK-DAG: %[[C16:.+]] = arith.constant 16 : index
// CHECK-DAG: %[[CONST:.+]] = hal.interface.constant.load
// CHECK: %[[SHAPE:.+]] = arith.divui %[[CONST]], %[[C16]]
// CHECK: %[[SHAPE:.+]] = arith.divsi %[[CONST]], %[[C16]]
// CHECK: %[[SUBSPAN:.+]] = hal.interface.binding.subspan
// CHECK-SAME: !flow.dispatch.tensor<readonly:tensor<2x?x16x32xf32>>{%[[SHAPE]]}
// CHECK: %[[LOAD:.+]] = flow.dispatch.tensor.load %[[SUBSPAN]]
Expand All @@ -81,7 +81,7 @@ func.func @fold_collapse_into_stores_dynamic(%arg0 : tensor<2x?x32xf32>) {
// CHECK-LABEL: func @fold_collapse_into_stores_dynamic(
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK: %[[CONST:.+]] = hal.interface.constant.load
// CHECK: %[[SHAPE:.+]] = arith.divui %[[CONST]], %[[C2]]
// CHECK: %[[SHAPE:.+]] = arith.divsi %[[CONST]], %[[C2]]
// CHECK: %[[SUBSPAN:.+]] = hal.interface.binding.subspan
// CHECK-SAME: !flow.dispatch.tensor<writeonly:tensor<2x?x32xf32>>{%[[SHAPE]]}
// CHECK: flow.dispatch.tensor.store %{{.+}}, %[[SUBSPAN]]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -197,18 +197,17 @@ util.func public @attention_dynamic(%arg0: tensor<?x?x?xf16>, %arg1: tensor<?x?x
// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK-DAG: %[[D2:.+]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK-DAG: %[[D4:.+]] = tensor.dim %[[ARG2]], %[[C2]]
// CHECK-DAG: %[[SPLIT0:.+]] = arith.divui %[[D0]]
// CHECK-DAG: %[[VAL:.+]] = affine.apply affine_map<()[s0] -> (s0 floordiv 2)>()[%[[D0]]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[VAL]], %[[D1]], %[[D4]]) : tensor<2x?x?x?xf16>
// CHECK-DAG: %[[SPLIT0:.+]] = arith.divsi %[[D0]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[SPLIT0]], %[[D1]], %[[D4]]) : tensor<2x?x?x?xf16>
// CHECK-DAG: %[[QUERY:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2], [3]{{\]}} output_shape [2, %[[SPLIT0]], %[[D1]], %[[D2]]]
// CHECK-DAG: %[[D5:.+]] = tensor.dim %[[ARG1]], %[[C0]]
// CHECK-DAG: %[[D6:.+]] = tensor.dim %[[ARG1]], %[[C1]]
// CHECK-DAG: %[[D7:.+]] = tensor.dim %[[ARG1]], %[[C2]]
// CHECK-DAG: %[[SPLIT1:.+]] = arith.divui %[[D5]], %[[C2]]
// CHECK-DAG: %[[SPLIT1:.+]] = arith.divsi %[[D5]], %[[C2]]
// CHECK-DAG: %[[KEY:.+]] = tensor.expand_shape %[[ARG1]] {{\[}}[0, 1], [2], [3]{{\]}} output_shape [2, %[[SPLIT1]], %[[D6]], %[[D7]]]
// CHECK-DAG: %[[D8:.+]] = tensor.dim %[[ARG2]], %[[C0]]
// CHECK-DAG: %[[D9:.+]] = tensor.dim %[[ARG2]], %[[C1]]
// CHECK-DAG: %[[SPLIT2:.+]] = arith.divui %[[D8]], %[[C2]]
// CHECK-DAG: %[[SPLIT2:.+]] = arith.divsi %[[D8]], %[[C2]]
// CHECK-DAG: %[[CACHE:.+]] = tensor.expand_shape %[[ARG2]] {{\[}}[0, 1], [2], [3]{{\]}} output_shape [2, %[[SPLIT2]], %[[D9]], %[[D4]]]
// CHECK: %[[ATTENTION:.+]] = iree_linalg_ext.attention
// CHECK-SAME: indexing_maps =
Expand Down Expand Up @@ -263,23 +262,22 @@ util.func public @attention_dynamic_masked(%arg0: tensor<?x?x?xf16>, %arg1: tens
// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK-DAG: %[[D2:.+]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK-DAG: %[[D4:.+]] = tensor.dim %[[ARG2]], %[[C2]]
// CHECK-DAG: %[[SPLIT0:.+]] = arith.divui %[[D0]]
// CHECK-DAG: %[[VAL:.+]] = affine.apply affine_map<()[s0] -> (s0 floordiv 2)>()[%[[D0]]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[VAL]], %[[D1]], %[[D4]]) : tensor<2x?x?x?xf16>
// CHECK-DAG: %[[SPLIT0:.+]] = arith.divsi %[[D0]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty(%[[SPLIT0]], %[[D1]], %[[D4]]) : tensor<2x?x?x?xf16>
// CHECK-DAG: %[[QUERY:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2], [3]{{\]}} output_shape [2, %[[SPLIT0]], %[[D1]], %[[D2]]]
// CHECK-DAG: %[[D5:.+]] = tensor.dim %[[ARG1]], %[[C0]]
// CHECK-DAG: %[[D6:.+]] = tensor.dim %[[ARG1]], %[[C1]]
// CHECK-DAG: %[[D7:.+]] = tensor.dim %[[ARG1]], %[[C2]]
// CHECK-DAG: %[[SPLIT1:.+]] = arith.divui %[[D5]], %[[C2]]
// CHECK-DAG: %[[SPLIT1:.+]] = arith.divsi %[[D5]], %[[C2]]
// CHECK-DAG: %[[KEY:.+]] = tensor.expand_shape %[[ARG1]] {{\[}}[0, 1], [2], [3]{{\]}} output_shape [2, %[[SPLIT1]], %[[D6]], %[[D7]]]
// CHECK-DAG: %[[D8:.+]] = tensor.dim %[[ARG2]], %[[C0]]
// CHECK-DAG: %[[D9:.+]] = tensor.dim %[[ARG2]], %[[C1]]
// CHECK-DAG: %[[SPLIT2:.+]] = arith.divui %[[D8]], %[[C2]]
// CHECK-DAG: %[[SPLIT2:.+]] = arith.divsi %[[D8]], %[[C2]]
// CHECK-DAG: %[[CACHE:.+]] = tensor.expand_shape %[[ARG2]] {{\[}}[0, 1], [2], [3]{{\]}} output_shape [2, %[[SPLIT2]], %[[D9]], %[[D4]]]
// CHECK-DAG: %[[D10:.+]] = tensor.dim %[[ARG4]], %[[C0]]
// CHECK-DAG: %[[D11:.+]] = tensor.dim %[[ARG4]], %[[C1]]
// CHECK-DAG: %[[D12:.+]] = tensor.dim %[[ARG4]], %[[C2]]
// CHECK-DAG: %[[SPLIT3:.+]] = arith.divui %[[D10]], %[[C2]]
// CHECK-DAG: %[[SPLIT3:.+]] = arith.divsi %[[D10]], %[[C2]]
// CHECK-DAG: %[[MASK:.+]] = tensor.expand_shape %[[ARG4]] {{\[}}[0, 1], [2], [3]{{\]}} output_shape [2, %[[SPLIT3]], %[[D11]], %[[D12]]]
// CHECK: %[[ATTENTION:.+]] = iree_linalg_ext.attention
// CHECK-SAME: indexing_maps =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -292,12 +292,12 @@ func.func @conv2d_all_dyn(%arg0: tensor<?x?x?x?xi8>, %arg1: tensor<?x?x?x?xi8>,
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%arg0 : tensor<?x?x?x?xi8>)
// CHECK-SAME: outs(%[[FILL]] : tensor<?x?x?xi32>)
// CHECK: %[[DIM00:.+]] = tensor.dim %arg0, %[[I0]]
// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %[[SUMI]] {{\[\[}}0], [1], [2, 3]]

// CHECK-DAG: %[[DIM0:.+]] = tensor.dim %arg0, %[[I0]]
// CHECK-DAG: %[[DIM1:.+]] = tensor.dim %arg2, %[[I1]]
// CHECK-DAG: %[[DIM2:.+]] = tensor.dim %arg2, %[[I2]]
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM0]], %[[DIM1]], %[[DIM2]])
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM00]], %[[DIM1]], %[[DIM2]])
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[C0]] : i32) outs(%9 : tensor<?x?x?x1xi32>)
// CHECK-DAG: %[[DIM0:.+]] = tensor.dim %arg1, %[[I0]] : tensor<?x?x?x?xi8>
// CHECK-DAG: %[[DIM1:.+]] = tensor.dim %arg1, %[[I1]] : tensor<?x?x?x?xi8>
Expand Down
Loading